Print the longest leaf to leaf path in a Binary tree
C++
// C++ program to print the longest leaf to leaf // path #include <bits/stdc++.h> using namespace std; // Tree node structure used in the program struct Node { int data; Node *left, *right; }; struct Node* newNode( int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // Function to find height of a tree int height(Node* root, int & ans, Node*(&k), int & lh, int & rh, int & f) { if (root == NULL) return 0; int left_height = height(root->left, ans, k, lh, rh, f); int right_height = height(root->right, ans, k, lh, rh, f); // update the answer, because diameter of a // tree is nothing but maximum value of // (left_height + right_height + 1) for each node if (ans < 1 + left_height + right_height) { ans = 1 + left_height + right_height; // save the root, this will help us finding the // left and the right part of the diameter k = root; // save the height of left & right subtree as well. lh = left_height; rh = right_height; } return 1 + max(left_height, right_height); } // prints the root to leaf path void printArray( int ints[], int len, int f) { int i; // print left part of the path in reverse order if (f == 0) { for (i = len - 1; i >= 0; i--) { printf ( "%d " , ints[i]); } } // print right part of the path else if (f == 1) { for (i = 0; i < len; i++) { printf ( "%d " , ints[i]); } } } // this function finds out all the root to leaf paths void printPathsRecur(Node* node, int path[], int pathLen, int max, int & f) { if (node == NULL) return ; // append this node to the path array path[pathLen] = node->data; pathLen++; // If it's a leaf, so print the path that led to here if (node->left == NULL && node->right == NULL) { // print only one path which is equal to the // height of the tree. if (pathLen == max && (f == 0 || f == 1)) { printArray(path, pathLen, f); f = 2; } } else { // otherwise try both subtrees printPathsRecur(node->left, path, pathLen, max, f); printPathsRecur(node->right, path, pathLen, max, f); } } // Computes the diameter of a binary tree with given root. void diameter(Node* root) { if (root == NULL) return ; // lh will store height of left subtree // rh will store height of right subtree int ans = INT_MIN, lh = 0, rh = 0; // f is a flag whose value helps in printing // left & right part of the diameter only once int f = 0; Node* k; int height_of_tree = height(root, ans, k, lh, rh, f); int lPath[100], pathlen = 0; // print the left part of the diameter printPathsRecur(k->left, lPath, pathlen, lh, f); printf ( "%d " , k->data); int rPath[100]; f = 1; // print the right part of the diameter printPathsRecur(k->right, rPath, pathlen, rh, f); } // Driver code int main() { // Enter the binary tree ... // 1 // / \ // 2 3 // / \ // 4 5 // \ / \ // 8 6 7 // / // 9 struct Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->left->right->left = newNode(6); root->left->right->right = newNode(7); root->left->left->right = newNode(8); root->left->left->right->left = newNode(9); diameter(root); return 0; } |
Java
// Java program to print the longest leaf to leaf // path import java.io.*; // Tree node structure used in the program class Node { int data; Node left, right; Node( int val) { data = val; left = right = null ; } } class GFG { static int ans, lh, rh, f; static Node k; public static Node Root; // Function to find height of a tree static int height(Node root) { if (root == null ) return 0 ; int left_height = height(root.left); int right_height = height(root.right); // update the answer, because diameter of a // tree is nothing but maximum value of // (left_height + right_height + 1) for each node if (ans < 1 + left_height + right_height) { ans = 1 + left_height + right_height; // save the root, this will help us finding the // left and the right part of the diameter k = root; // save the height of left & right subtree as well. lh = left_height; rh = right_height; } return 1 + Math.max(left_height, right_height); } // prints the root to leaf path static void printArray( int [] ints, int len) { int i; // print left part of the path in reverse order if (f == 0 ) { for (i = len - 1 ; i >= 0 ; i--) { System.out.print(ints[i] + " " ); } } else if (f == 1 ) { for (i = 0 ; i < len; i++) { System.out.print(ints[i] + " " ); } } } // this function finds out all the root to leaf paths static void printPathsRecur(Node node, int [] path, int pathLen, int max) { if (node == null ) return ; // append this node to the path array path[pathLen] = node.data; pathLen++; // If it's a leaf, so print the path that led to here if (node.left == null && node.right == null ) { // print only one path which is equal to the // height of the tree. if (pathLen == max && (f == 0 || f == 1 )) { printArray(path, pathLen); f = 2 ; } } else { // otherwise try both subtrees printPathsRecur(node.left, path, pathLen, max); printPathsRecur(node.right, path, pathLen, max); } } // Computes the diameter of a binary tree with given root. static void diameter(Node root) { if (root == null ) return ; // lh will store height of left subtree // rh will store height of right subtree ans = Integer.MIN_VALUE; lh = 0 ; rh = 0 ; // f is a flag whose value helps in printing // left & right part of the diameter only once f = 0 ; int height_of_tree = height(root); int [] lPath = new int [ 100 ]; int pathlen = 0 ; // print the left part of the diameter printPathsRecur(k.left, lPath, pathlen, lh); System.out.print(k.data+ " " ); int [] rPath = new int [ 100 ]; f = 1 ; // print the right part of the diameter printPathsRecur(k.right, rPath, pathlen, rh); } // Driver code public static void main (String[] args) { // Enter the binary tree ... // 1 // / \ // 2 3 // / \ // 4 5 // \ / \ // 8 6 7 // / // 9 GFG.Root = new Node( 1 ); GFG.Root.left = new Node( 2 ); GFG.Root.right = new Node( 3 ); GFG.Root.left.left = new Node( 4 ); GFG.Root.left.right = new Node( 5 ); GFG.Root.left.right.left = new Node( 6 ); GFG.Root.left.right.right = new Node( 7 ); GFG.Root.left.left.right = new Node( 8 ); GFG.Root.left.left.right.left = new Node( 9 ); diameter(Root); } } // This code is contributed by rag2127 |
Python3
# Python3 program to print the longest # leaf to leaf path # Tree node structure used in the program class Node: def __init__( self , x): self .data = x self .left = None self .right = None # Function to find height of a tree def height(root): global ans, k, lh, rh, f if (root = = None ): return 0 left_height = height(root.left) right_height = height(root.right) # Update the answer, because diameter of a # tree is nothing but maximum value of # (left_height + right_height + 1) for each node if (ans < 1 + left_height + right_height): ans = 1 + left_height + right_height # Save the root, this will help us finding the # left and the right part of the diameter k = root # Save the height of left & right # subtree as well. lh = left_height rh = right_height return 1 + max (left_height, right_height) # Prints the root to leaf path def printArray(ints, lenn, f): # Print left part of the path # in reverse order if (f = = 0 ): for i in range (lenn - 1 , - 1 , - 1 ): print (ints[i], end = " " ) # Print right part of the path elif (f = = 1 ): for i in range (lenn): print (ints[i], end = " " ) # This function finds out all the # root to leaf paths def printPathsRecur(node, path, maxm, pathlen): global f if (node = = None ): return # Append this node to the path array path[pathlen] = node.data pathlen + = 1 # If it's a leaf, so print the # path that led to here if (node.left = = None and node.right = = None ): # Print only one path which is equal to the # height of the tree. # print(pathlen,"---",maxm) if (pathlen = = maxm and (f = = 0 or f = = 1 )): # print("innn") printArray(path, pathlen,f) f = 2 else : # Otherwise try both subtrees printPathsRecur(node.left, path, maxm, pathlen) printPathsRecur(node.right, path, maxm, pathlen) # Computes the diameter of a binary # tree with given root. def diameter(root): global ans, lh, rh, f, k, pathLen if (root = = None ): return # f is a flag whose value helps in printing # left & right part of the diameter only once height_of_tree = height(root) lPath = [ 0 for i in range ( 100 )] # print(lh,"--",rh) # Print the left part of the diameter printPathsRecur(k.left, lPath, lh, 0 ); print (k.data, end = " " ) rPath = [ 0 for i in range ( 100 )] f = 1 # Print the right part of the diameter printPathsRecur(k.right, rPath, rh, 0 ) # Driver code if __name__ = = '__main__' : k, lh, rh, f, ans, pathLen = None , 0 , 0 , 0 , 0 - 10 * * 19 , 0 # Enter the binary tree ... # 1 # / \ # 2 3 # / \ # 4 5 # \ / \ # 8 6 7 # / # 9 root = Node( 1 ) root.left = Node( 2 ) root.right = Node( 3 ) root.left.left = Node( 4 ) root.left.right = Node( 5 ) root.left.right.left = Node( 6 ) root.left.right.right = Node( 7 ) root.left.left.right = Node( 8 ) root.left.left.right.left = Node( 9 ) diameter(root) # This code is contributed by mohit kumar 29 |
C#
// C# program to print the longest leaf to leaf // path using System; // Tree node structure used in the program public class Node { public int data; public Node left, right; public Node( int val) { data = val; left = right = null ; } } public class GFG { static int ans, lh, rh, f; static Node k; public static Node Root; // Function to find height of a tree static int height(Node root) { if (root == null ) return 0; int left_height = height(root.left); int right_height = height(root.right); // update the answer, because diameter of a // tree is nothing but maximum value of // (left_height + right_height + 1) for each node if (ans < 1 + left_height + right_height) { ans = 1 + left_height + right_height; // save the root, this will help us finding the // left and the right part of the diameter k = root; // save the height of left & right subtree as well. lh = left_height; rh = right_height; } return 1 + Math.Max(left_height, right_height); } // prints the root to leaf path static void printArray( int [] ints, int len) { int i; // print left part of the path in reverse order if (f == 0) { for (i = len - 1; i >= 0; i--) { Console.Write(ints[i] + " " ); } } else if (f == 1) { for (i = 0; i < len; i++) { Console.Write(ints[i] + " " ); } } } // this function finds out all the root to leaf paths static void printPathsRecur(Node node, int [] path, int pathLen, int max) { if (node == null ) return ; // append this node to the path array path[pathLen] = node.data; pathLen++; // If it's a leaf, so print the path that led to here if (node.left == null && node.right == null ) { // print only one path which is equal to the // height of the tree. if (pathLen == max && (f == 0 || f == 1)) { printArray(path, pathLen); f = 2; } } else { // otherwise try both subtrees printPathsRecur(node.left, path, pathLen, max); printPathsRecur(node.right, path, pathLen, max); } } // Computes the diameter of a binary tree with given root. static void diameter(Node root) { if (root == null ) return ; // lh will store height of left subtree // rh will store height of right subtree ans = Int32.MinValue; lh = 0; rh = 0; // f is a flag whose value helps in printing // left & right part of the diameter only once f = 0; int height_of_tree= height(root); int [] lPath = new int [100]; int pathlen = 0 * height_of_tree; // print the left part of the diameter printPathsRecur(k.left, lPath, pathlen, lh); Console.Write(k.data+ " " ); int [] rPath = new int [100]; f = 1; // print the right part of the diameter printPathsRecur(k.right, rPath, pathlen, rh); } // Driver code static public void Main (){ // Enter the binary tree ... // 1 // / \ // 2 3 // / \ // 4 5 // \ / \ // 8 6 7 // / // 9 GFG.Root = new Node(1); GFG.Root.left = new Node(2); GFG.Root.right = new Node(3); GFG.Root.left.left = new Node(4); GFG.Root.left.right = new Node(5); GFG.Root.left.right.left = new Node(6); GFG.Root.left.right.right = new Node(7); GFG.Root.left.left.right = new Node(8); GFG.Root.left.left.right.left = new Node(9); diameter(Root); } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // Javascript program to print the longest leaf to leaf // path // Tree node structure used in the program class Node { constructor(val) { this .data=val; this .left = this .right = null ; } } let ans, lh, rh, f; let k; let Root; // Function to find height of a tree function height(root) { if (root == null ) return 0; let left_height = height(root.left); let right_height = height(root.right); // update the answer, because diameter of a // tree is nothing but maximum value of // (left_height + right_height + 1) for each node if (ans < 1 + left_height + right_height) { ans = 1 + left_height + right_height; // save the root, this will help us finding the // left and the right part of the diameter k = root; // save the height of left & right subtree as well. lh = left_height; rh = right_height; } return 1 + Math.max(left_height, right_height); } // prints the root to leaf path function printArray(ints,len) { let i; // print left part of the path in reverse order if (f == 0) { for (i = len - 1; i >= 0; i--) { document.write(ints[i] + " " ); } } else if (f == 1) { for (i = 0; i < len; i++) { document.write(ints[i] + " " ); } } } // this function finds out all the root to leaf paths function printPathsRecur(node,path,pathLen,max) { if (node == null ) return ; // append this node to the path array path[pathLen] = node.data; pathLen++; // If it's a leaf, so print the path that led to here if (node.left == null && node.right == null ) { // print only one path which is equal to the // height of the tree. if (pathLen == max && (f == 0 || f == 1)) { printArray(path, pathLen); f = 2; } } else { // otherwise try both subtrees printPathsRecur(node.left, path, pathLen, max); printPathsRecur(node.right, path, pathLen, max); } } // Computes the diameter of a binary tree with given root. function diameter(root) { if (root == null ) return ; // lh will store height of left subtree // rh will store height of right subtree ans = Number.MIN_VALUE; lh = 0; rh = 0; // f is a flag whose value helps in printing // left & right part of the diameter only once f = 0; let height_of_tree = height(root); let lPath = new Array(100); let pathlen = 0; // print the left part of the diameter printPathsRecur(k.left, lPath, pathlen, lh); document.write(k.data+ " " ); let rPath = new Array(100); f = 1; // print the right part of the diameter printPathsRecur(k.right, rPath, pathlen, rh); } // Driver code // Enter the binary tree ... // 1 // / \ // 2 3 // / \ // 4 5 // \ / \ // 8 6 7 // / // 9 Root = new Node(1); Root.left = new Node(2); Root.right = new Node(3); Root.left.left = new Node(4); Root.left.right = new Node(5); Root.left.right.left = new Node(6); Root.left.right.right = new Node(7); Root.left.left.right = new Node(8); Root.left.left.right.left = new Node(9); diameter(Root); // This code is contributed by patel2127 </script> |
9 8 4 2 5 6
Time complexity: O(n) where n is size of binary tree
Auxiliary Space: O(h) where h is the height of binary tree.
Another Approach:
First define a function which print all possible longest paths through root of the tree
1.Find nodes at deepest level of left sub tree
2.Find nodes at deepest level of right sub tree
3.Print all possible paths from deepest nodes of left sub tree to deepest nodes of left sub tree
Second Define a function to print all the longest paths of the tree
1. find the diameter of the tree and pass it as argument of the function
2. Calculate left sub-tree height + right sub-tree height +1
3. if (left sub-tree height + right sub-tree height +1) is equal with diameter of tree
then longest path exist through root of the tree. Call the function which print
all possible longest paths through root of the tree for current tree.
4. Then call the same function to print all longest paths for its left sub tree and
right sub tree
5. Continue the above steps for all sub trees of the tree
C++
// C++ code addition #include <bits/stdc++.h> using namespace std; class Node { public : Node* left; Node* right; int value; Node( int value) { left = NULL; right = NULL; this ->value = value; } }; // create a function to find deepest nodes of the given tree class DeepestNodes { public : vector<Node*> nodes; void deepest(Node* root, int level) { if (root == NULL) { return ; } if (level == 1) { nodes.push_back(root); } else if (level > 1) { deepest(root->left, level - 1); deepest(root->right, level - 1); } } }; // create a function to calculate height of the given tree int height(Node* root) { if (root == NULL) { return 0; } return max(height(root->left), height(root->right)) + 1; } // create a function to calculate diameter of the given tree int diameter(Node* root) { if (root == NULL) { return 0; } int l_height = height(root->left); int r_height = height(root->right); return max(l_height + r_height + 1, max(diameter(root->left), diameter(root->right))); } // create a function to print the path from root to given node // flag=0 in order and flag=-1 reversed order void print_to_node(vector< int > stack, Node* root, Node* target, int flag) { // exit condition if (root == NULL) { return ; } stack.push_back(root->value); if (root->value == target->value) { // print stack as we hit the target node if (flag == 0) { for ( int i = 1; i < stack.size(); i++) { cout << stack[i] << " " ; } } else if (flag == -1) { for ( int i = stack.size() - 1; i >= 0; i--) { cout << stack[i] << " " ; } } } // call recursive print_to_node(stack, root->left, target, flag); print_to_node(stack, root->right, target, flag); stack.pop_back(); } // create a function to print all possible longest paths through root of the tree void print_path(Node* root) { DeepestNodes nodes_left; nodes_left.deepest(root->left, height(root->left)); vector<Node*> l_deepest = nodes_left.nodes; DeepestNodes nodes_right; nodes_right.deepest(root->right, height(root->right)); vector<Node*> r_deepest = nodes_right.nodes; if (l_deepest.size() == 0) { // only right deepest nodes exist for ( int i = 0; i < r_deepest.size(); i++) { Node* right = r_deepest[i]; print_to_node(vector< int >(), root, right, 0); cout << endl; } return ; } if (r_deepest.size() == 0) { for ( int i = 0; i < l_deepest.size(); i++) { Node* left = l_deepest[i]; print_to_node(vector< int >(), root, left, -1); cout << endl; } return ; } for ( int i = 0; i < l_deepest.size(); i++) { for ( int j = 0; j < r_deepest.size(); j++) { Node* left = l_deepest[i]; Node* right = r_deepest[j]; print_to_node(vector< int >(), root, left, -1); print_to_node(vector< int >(), root, right, 0); cout << endl; } } } // create a function to print longest path leaf to leaf void print_longest_path(Node* root, int diameter_tree) { if (root == NULL) { return ; } int height_sum = height(root->left) + height(root->right) + 1; if (height_sum == diameter_tree) { print_path(root); return ; } if (root->left) { print_longest_path(root->left, diameter_tree); } if (root->right) { print_longest_path(root->right, diameter_tree); } } int main() { // # test case // """ // Enter the binary tree ... // 1 // / \ // 2 3 // / \ \ // 4 5 11 // \ / \ // 8 6 7 // / \ // 9 10 // """ Node* root_node = new Node(1); root_node->left = new Node(2); root_node->right = new Node(3); root_node->right->right = new Node(11); root_node->left->left = new Node(4); root_node->left->left->right = new Node(8); root_node->left->left->right->left = new Node(9); root_node->left->right = new Node(5); root_node->left->right->left = new Node(6); root_node->left->right->right = new Node(7); root_node->left->right->right->right = new Node(10); cout << "Longest paths in tree:" << endl; print_longest_path(root_node, diameter(root_node)); return 0; } // The code is contributed by Utkarsh |
Javascript
// javascript code addition class Node{ constructor(value){ this .left = null ; this .right = null ; this .value = value; } } // create a function to calculate height of the given tree function height(root){ if (root == null ) return 0; return Math.max(height(root.left), height(root.right)) + 1; } // create a function to find deepest nodes of the given tree class DeepestNodes{ constructor(){ this .nodes = []; } deepest(root, level){ if (root == null ) return ; if (level == 1){ this .nodes.push(root); } else if (level > 1){ this .deepest(root.left, level - 1); this .deepest(root.right, level - 1); } } } // create a function to calculate diameter of the given tree function diameter(root){ if (root == null ) return 0; let l_height = height(root.left); let r_height = height(root.right); return Math.max(l_height + r_height + 1, diameter(root.left), diameter(root.right)); } // create a function to print the path from root to given node // flag=0 in order and flag=-1 reversed order function print_to_node(stack, root, target, flag){ // exit condition if (root == null ) return ; stack.push(root.value) if (root.value == target.value){ // print stack as we hit the target node if (flag == 0) for (let i = 0; i < stack.length; i++){ console.log(stack[i]); } else if (flag == -1) for (let i= 0; i < stack.length - 1; i++){ console.log(stack[stack.length - 1 - i]); } } // call recursive print_to_node(stack, root.left, target, flag) print_to_node(stack, root.right, target, flag) stack.pop() } // create a function to print all possible longest paths through root of the tree function print_path(root){ let nodes_left = new DeepestNodes(); nodes_left.deepest(root.left, height(root.left)); let l_deepest = nodes_left.nodes; // print("l_deepest:", [e.value for e in l_deepest]) let nodes_right = new DeepestNodes(); nodes_right.deepest(root.right, height(root.right)); let r_deepest = nodes_right.nodes; // print("r_deepest:", [e.value for e in r_deepest]) if (l_deepest.length == 0){ // only right deepest nodes exist for (let i = 0; i < r_deepest.length; i++){ let right = r_deepest[i]; print_to_node([], root, right, 0); console.log(); } return ; } if (r_deepest.length == 0){ for (let i = 0; i < l_deepest.length; i++){ let left = l_deepest[i]; print_to_node([], root, left, -1) console.log() } return ; } for (let i = 0; i < l_deepest.length; i++){ for (let j = 0; j < r_deepest.length; j++){ let left = l_deepest[i]; let right = r_deepest[j]; print_to_node([], root, left, -1) print_to_node([], root, right, 0) console.log() } } } // create a function to print longest path leaf to leaf function print_longest_path(root, diameter_tree){ if (root == null ) return ; let height_sum = height(root.left) + height(root.right) + 1 if (height_sum == diameter_tree){ print_path(root); return ; } if (root.left) print_longest_path(root.left, diameter_tree); if (root.right) print_longest_path(root.right, diameter_tree); } // # test case // """ // Enter the binary tree ... // 1 // / \ // 2 3 // / \ \ // 4 5 11 // \ / \ // 8 6 7 // / \ // 9 10 // """ root_node = new Node(1); root_node.left = new Node(2); root_node.right = new Node(3); root_node.right.right = new Node(11); root_node.left.left = new Node(4); root_node.left.left.right = new Node(8); root_node.left.left.right.left = new Node(9); root_node.left.right = new Node(5); root_node.left.right.left = new Node(6); root_node.left.right.right = new Node(7); root_node.left.right.right.right = new Node(10); console.log( "Longest paths in tree" ); print_longest_path(root_node, diameter(root_node)); // The code is contributed by Nidhi goel. |
Python3
# THIS CODE IS CONTRIBUTED BY KIRTI AGARWAL class Node: def __init__( self , value): self .left = None self .right = None self .value = value # create a function to calculate height of the given tree def height(root): if root is None : return 0 return max (height(root.left), height(root.right)) + 1 # create a function to find deepest nodes of the given tree class DeepestNodes( object ): def __init__( self ): self .nodes = [] def deepest( self , root, level): if root is None : return if level = = 1 : self .nodes.append(root) elif level > 1 : self .deepest(root.left, level - 1 ) self .deepest(root.right, level - 1 ) # create a function to calculate diameter of the given tree def diameter(root): if root is None : return 0 l_height = height(root.left) r_height = height(root.right) return max (l_height + r_height + 1 , diameter(root.left), diameter(root.right)) # create a function to print the path from root to given node # flag=0 in order and flag=-1 reversed order def print_to_node(stack, root, target, flag): if root is None : # exit condition return stack.append(root.value) if root.value = = target.value: # print stack as we hit the target node if flag = = 0 : for i in range ( len (stack)): print (stack[i], end = " " ) elif flag = = - 1 : for i in range ( len (stack) - 1 ): print (stack[ len (stack) - 1 - i], end = " " ) # call recursive print_to_node(stack, root.left, target, flag) print_to_node(stack, root.right, target, flag) stack.pop() # create a function to print all possible longest paths through root of the tree def print_path(root): nodes_left = DeepestNodes() nodes_left.deepest(root.left, height(root.left)) l_deepest = nodes_left.nodes # print("l_deepest:", [e.value for e in l_deepest]) nodes_right = DeepestNodes() nodes_right.deepest(root.right, height(root.right)) r_deepest = nodes_right.nodes # print("r_deepest:", [e.value for e in r_deepest]) if len (l_deepest) = = 0 : # only right deepest nodes exist for right in r_deepest: print_to_node([], root, right, 0 ) print () return if len (r_deepest) = = 0 : # only left deepest nodes exist for left in l_deepest: print_to_node([], root, left, - 1 ) print () return for left in l_deepest: for right in r_deepest: print_to_node([], root, left, - 1 ) print_to_node([], root, right, 0 ) print () # create a function to print longest path leaf to leaf def print_longest_path(root, diameter_tree): if root is None : return height_sum = height(root.left) + height(root.right) + 1 if height_sum = = diameter_tree: print_path(root) return if root.left: print_longest_path(root.left, diameter_tree) if root.right: print_longest_path(root.right, diameter_tree) # test case """ Enter the binary tree ... 1 / \ 2 3 / \ \ 4 5 11 \ / \ 8 6 7 / \ 9 10 """ root_node = Node( 1 ) root_node.left = Node( 2 ) root_node.right = Node( 3 ) root_node.right.right = Node( 11 ) root_node.left.left = Node( 4 ) root_node.left.left.right = Node( 8 ) root_node.left.left.right.left = Node( 9 ) root_node.left.right = Node( 5 ) root_node.left.right.left = Node( 6 ) root_node.left.right.right = Node( 7 ) root_node.left.right.right.right = Node( 10 ) print ( "Longest paths in tree" ) print_longest_path(root_node, diameter(root_node)) |
Longest paths in tree 9 8 4 2 1 3 11 10 7 5 2 1 3 11
Time Complexity: O(N) where N is the number of nodes in given binary tree
Auxiliary Space: O(h) due to recursion call stack
Please Login to comment...