Open In App
Related Articles

Print Levels of all nodes in a Binary Tree

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a Binary Tree and a key, write a function that prints levels of all keys in given binary tree.

For example, consider the following tree. If the input key is 3, then your function should return 1. If the input key is 4, then your function should return 3. And for key which is not present in key, then your function should return 0.

Input:
       3
      / \
     2   5
    / \
   1   4

output:
 Level of 1 is 3
 Level of 2 is 2
 Level of 3 is 1
 Level of 4 is 3
 Level of 5 is 2

We have discussed an recursive solution in below post. 
Get Level of a node in a Binary Tree

In this post, an iterative solution based on Level order traversal is discussed. We store level of every node in queue together with the node while doing the traversal. 

Algorithm:

Step 1: Start 
Step 2: Create a class of static type name it as pair which have two parameter one of node type an danother is of integer type.
Step 3: create a function of static type with null return type nameas “printLevel” which take raaotof linked list as input.
            a. Set base condition as if ( root == null ) return
            b. Create a queue to hold the tree nodes and their levels name it as “q”.
            c. add root node at level 1 in q
            d. Define a pair variable p.
            e. start a while loop to do level-order traversal until queue is empty:
               1. Dequeue a node and its level into the pair variable p at the front of the queue.
               2. Print the data and the node’s level
               3. Enqueue the node’s left child with its level increased by 1 if it has one.
               4. Enqueue the node’s right child with its level increased by 1 if it has one.

step 4: End

Implementation:

C++




// An iterative C++ program to print levels
// of all nodes
#include <bits/stdc++.h>
using namespace std;
 
/* A tree node structure */
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
};
 
void printLevel(struct Node* root)
{
    if (!root)
        return;
 
    // queue to hold tree node with level
    queue<pair<struct Node*, int> > q;
 
    q.push({root, 1}); // let root node be at level 1
 
    pair<struct Node*, int> p;
 
    // Do level Order Traversal of tree
    while (!q.empty()) {
        p = q.front();
        q.pop();
 
        cout << "Level of " << p.first->data
             << " is " << p.second << "\n";
 
        if (p.first->left)
            q.push({ p.first->left, p.second + 1 });
        if (p.first->right)
            q.push({ p.first->right, p.second + 1 });
    }
}
 
/* Utility function to create a new Binary Tree node */
struct Node* newNode(int data)
{
    struct Node* temp = new struct Node;
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
/* Driver function to test above functions */
int main()
{
    struct Node* root = NULL;
 
    /* Constructing tree given in the above figure */
    root = newNode(3);
    root->left = newNode(2);
    root->right = newNode(5);
    root->left->left = newNode(1);
    root->left->right = newNode(4);
 
    printLevel(root);
    return 0;
}

Java




// Java program to print
// levels of all nodes
import java.util.LinkedList;
import java.util.Queue;
public class Print_Level_Btree {
     
    /* A tree node structure */
    static class Node {
        int data;
        Node left;
        Node right;
        Node(int data){
            this.data = data;
            left = null;
            right = null;
        }
    }
     
    // User defined class Pair to hold
    // the node and its level
    static class Pair{
        Node n;
        int i;
        Pair(Node n, int i){
            this.n = n;
            this.i = i;
        }
         
    }
     
    // function to print the nodes and
    // its corresponding level
    static void printLevel(Node root)
    {
        if (root == null)
            return;
      
        // queue to hold tree node with level
        Queue<Pair> q = new LinkedList<Pair>();
      
        // let root node be at level 1
        q.add(new Pair(root, 1));
      
        Pair p;
      
        // Do level Order Traversal of tree
        while (!q.isEmpty()) {
            p = q.peek();
            q.remove();
      
            System.out.println("Level of " + p.n.data +
                    " is " + p.i);
            if (p.n.left != null)
                q.add(new Pair(p.n.left, p.i + 1));
            if (p.n.right != null)
                q.add(new Pair(p.n.right, p.i + 1));
        }
    }
     
    /* Driver function to test above
        functions */
    public static void main(String args[])
    {
        Node root = null;
      
        /* Constructing tree given in the
              above figure */
        root = new Node(3);
        root.left = new Node(2);
        root.right = new Node(5);
        root.left.left = new Node(1);
        root.left.right = new Node(4);
      
        printLevel(root);
    }
}
// This code is contributed by Sumit Ghosh

Python3




# Python3 program to print levels
# of all nodes
 
# Helper function that allocates a new
# node with the given data and None
# left and right pointers.                                    
class newNode:
 
    # Construct to create a new node
    def __init__(self, key):
        self.data = key
        self.left = None
        self.right = None
 
def printLevel( root):
 
    if (not root):
        return
 
    # queue to hold tree node with level
    q = []
 
    # let root node be at level 1
    q.append([root, 1])
 
    p = []
 
    # Do level Order Traversal of tree
    while (len(q)):
        p = q[0]
        q.pop(0)
        print("Level of", p[0].data, "is", p[1])
        if (p[0].left):
            q.append([p[0].left, p[1] + 1])
        if (p[0].right):
            q.append([p[0].right, p[1] + 1 ])
 
# Driver Code
if __name__ == '__main__':
     
    """
    Let us create Binary Tree shown
    in above example """
    root = newNode(3)
    root.left = newNode(2)
    root.right = newNode(5)
    root.left.left = newNode(1)
    root.left.right = newNode(4)
    printLevel(root)
 
# This code is contributed by
# Shubham Singh(SHUBHAMSINGH10)

C#




using System;
using System.Collections.Generic;
 
// C# program to print 
// levels of all nodes
public class Print_Level_Btree
{
 
    /* A tree node structure */
    public class Node
    {
        public int data;
        public Node left;
        public Node right;
        public Node(int data)
        {
            this.data = data;
            left = null;
            right = null;
        }
    }
 
    // User defined class Pair to hold 
    // the node and its level
    public class Pair
    {
        public Node n;
        public int i;
        public Pair(Node n, int i)
        {
            this.n = n;
            this.i = i;
        }
 
    }
 
    // function to print the nodes and 
    // its corresponding level
    public static void printLevel(Node root)
    {
        if (root == null)
        {
            return;
        }
 
        // queue to hold tree node with level
        LinkedList<Pair> q = new LinkedList<Pair>();
 
        // let root node be at level 1
        q.AddLast(new Pair(root, 1));
 
        Pair p;
 
        // Do level Order Traversal of tree
        while (q.Count > 0)
        {
            p = q.First.Value;
            q.RemoveFirst();
 
            Console.WriteLine("Level of " + p.n.data + " is " + p.i);
            if (p.n.left != null)
            {
                q.AddLast(new Pair(p.n.left, p.i + 1));
            }
            if (p.n.right != null)
            {
                q.AddLast(new Pair(p.n.right, p.i + 1));
            }
        }
    }
 
    /* Driver function to test above
        functions */
    public static void Main(string[] args)
    {
        Node root = null;
 
        /* Constructing tree given in the 
              above figure */
        root = new Node(3);
        root.left = new Node(2);
        root.right = new Node(5);
        root.left.left = new Node(1);
        root.left.right = new Node(4);
 
        printLevel(root);
    }
}
 
  // This code is contributed by Shrikant13

Javascript




<script>
    // Javascript program to print
    // levels of all nodes
     
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
 
    // function to print the nodes and
    // its corresponding level
    function printLevel(root)
    {
        if (root == null)
            return;
        
        // queue to hold tree node with level
        let q = [];
        
        // let root node be at level 1
        q.push([root, 1]);
        
        let p;
        
        // Do level Order Traversal of tree
        while (q.length > 0) {
            p = q[0];
            q.shift();
        
            document.write("Level of " + p[0].data +
                    " is " + p[1] + "</br>");
            if (p[0].left != null)
                q.push([p[0].left, p[1] + 1]);
            if (p[0].right != null)
                q.push([p[0].right, p[1] + 1]);
        }
    }
     
    let root = null;
        
    /* Constructing tree given in the
                above figure */
    root = new Node(3);
    root.left = new Node(2);
    root.right = new Node(5);
    root.left.left = new Node(1);
    root.left.right = new Node(4);
 
    printLevel(root);
     
    // This code is contributed by suresh07.
</script>

Output

Level of 3 is 1
Level of 2 is 2
Level of 5 is 2
Level of 1 is 3
Level of 4 is 3

Time Complexity: O(n) where n is the number of nodes in the given Binary Tree.
Auxiliary Space: O(n) where n is the number of nodes in the given Binary tree due to queue data structure.
 

This article is contributed by Abhishek Rajput. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. 


Last Updated : 03 Mar, 2023
Like Article
Save Article
Similar Reads
Related Tutorials