Print first N terms of series (0.25, 0.5, 0.75, …) in fraction representation

Given an integer N, the task is to print the first N terms of the series in their fraction form i.e.

1/4, 1/2, 3/4, 1, 5/4, …

The above series has values as 0.25, 0.5, 0.75, 1, 1.25, ….etc. It is an Arithmetic progression that begins with 0.25 and has a difference of 0.25.



Examples:

Input: N = 6
Output: 1/4 1/2 3/4 1 5/4 3/2

Input: N = 9
Output: 1/4 1/2 3/4 1 5/4 3/2 7/4 2 9/4

Approach: Consider the first four terms of the series as the base terms. Store the numerator elements and denominator elements separately.
Consider the first term 1/4, the fifth term is 1 + (1 * 4) / 4 which is 1/5.
Similarly, consider the second term 1/2 the sixth term is 1 + (1 * 2) / 2 which is 3/2.
Hence, we can consider the denominators will always be either 2, 4 or no denominator and the numerator of the term can be calculated from the denominator.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to print the required series
void printSeries(int n)
{
    // Numerators for the first four numerators
    // of the series
    int nmtr[4] = { 1, 1, 1, 3 };
  
    // Denominators for the first four denominators
    // of the series
    int dntr[4] = { 0, 4, 2, 4 };
  
    for (int i = 1; i <= n; i++) {
  
        // If location of the term in the series is
        // a multiple of 4 then there will be no denominator
        if (i % 4 == 0)
            cout << nmtr[i % 4] + (i / 4) - 1 << " ";
  
        // Otherwise there will be denominator
        else {
  
            // Printing the numerator and the denominator terms
            cout << nmtr[i % 4] + ((i / 4) * dntr[i % 4])
                 << "/" << dntr[i % 4] << " ";
        }
    }
}
  
// Driver code
int main()
{
    int n = 9;
    printSeries(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
  
class GFG
{
  
// Function to print the required series
public static void printSeries(int n)
{
    // Numerators for the first four numerators
    // of the series
    int[] nmtr = new int[]{ 1, 1, 1, 3 };
  
    // Denominators for the first four denominators
    // of the series
    int[] dntr = new int[]{ 0, 4, 2, 4 };
  
    for (int i = 1; i <= n; i++) 
    {
  
        // If location of the term in the series is
        // a multiple of 4 then there will be no denominator
        if (i % 4 == 0)
            System.out.print( nmtr[i % 4] + (i / 4) - 1 + " ");
  
        // Otherwise there will be denominator
        else 
        {
  
            // Printing the numerator and the denominator terms
            System.out.print( nmtr[i % 4] + ((i / 4) * dntr[i % 4])
                +"/" + dntr[i % 4] +" ");
        }
    }
}
  
// Driver code
public static void main(String[] args)
{
    int n = 9;
    printSeries(n);
}
}
  
// This code is contributed
// by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of the approach
  
# Function to print the required series
def printSeries(n):
      
    # Numerators for the first four 
    # numerators of the series
    nmtr = [1, 1, 1, 3]
  
    # Denominators for the first four 
    # denominators of the series
    dntr = [0, 4, 2, 4]
  
    for i in range(1, n + 1, 1):
          
        # If location of the term in the 
        # series is a multiple of 4 then 
        # there will be no denominator
        if (i % 4 == 0):
            print(nmtr[i % 4] + int(i / 4) - 1
                                     end = " ")
  
        # Otherwise there will be denominator
        else:
              
            # Printing the numerator and 
            # the denominator terms
            print(nmtr[i % 4] + (int(i / 4) * 
                    dntr[i % 4]), end = "")
            print("/", end = "")
            print(dntr[i % 4], end = " ")
  
# Driver code
if __name__ == '__main__':
    n = 9
    printSeries(n)
  
# This code is contributed by
# Shashank_Sharma

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
      
// Function to print the required series
static void printSeries(int n)
{
      
    // Numerators for the first four numerators
    // of the series
    int[] nmtr = { 1, 1, 1, 3 };
  
    // Denominators for the first four denominators
    // of the series
    int[] dntr = { 0, 4, 2, 4 };
  
    for (int i = 1; i <= n; i++) 
    {
  
        // If location of the term in the series is
        // a multiple of 4 then there will be no denominator
        if (i % 4 == 0)
            Console.Write((nmtr[i % 4] + (i / 4) - 1) + " ");
  
        // Otherwise there will be denominator
        else
        {
  
            // Printing the numerator and the denominator terms
            Console.Write((nmtr[i % 4] + ((i / 4) * dntr[i % 4])) +
                                        "/" + dntr[i % 4] + " ");
        }
    }
}
  
// Driver code
public static void Main()
{
    int n = 9;
    printSeries(n);
}
}
  
// This code is contributed
// by Akanksha Rai

chevron_right


Output:

1/4 1/2 3/4 1 5/4 3/2 7/4 2 9/4


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.