# Print first N terms of Lower Wythoff sequence

Given an integer N, the task is to print the first N terms of the Lower Wythoff sequence.

Examples:

Input: N = 5
Output: 1, 3, 4, 6, 8

Input: N = 10
Output: 1, 3, 4, 6, 8, 9, 11, 12, 14, 16

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Lower Wythoff sequence is a sequence whose nth term is a(n) = floor(n * phi) where phi = (1 + sqrt(5)) / 2. So, we run a loop and find the first n terms of the sequence.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to print the first n terms ` `// of the lower Wythoff sequence ` `void` `lowerWythoff(``int` `n) ` `{ ` ` `  `    ``// Calculate value of phi ` `    ``double` `phi = (1 + ``sqrt``(5)) / 2.0; ` ` `  `    ``// Find the numbers ` `    ``for` `(``int` `i = 1; i <= n; i++) { ` ` `  `        ``// a(n) = floor(n * phi) ` `        ``double` `ans = ``floor``(i * phi); ` ` `  `        ``// Print the nth numbers ` `        ``cout << ans; ` ` `  `        ``if` `(i != n) ` `            ``cout << ``", "``; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 5; ` ` `  `    ``lowerWythoff(n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG ` `{ ` ` `  `// Function to print the first n terms ` `// of the lower Wythoff sequence ` `static` `void` `lowerWythoff(``int` `n) ` `{ ` ` `  `    ``// Calculate value of phi ` `    ``double` `phi = (``1` `+ Math.sqrt(``5``)) / ``2.0``; ` ` `  `    ``// Find the numbers ` `    ``for` `(``int` `i = ``1``; i <= n; i++)  ` `    ``{ ` ` `  `        ``// a(n) = floor(n * phi) ` `        ``double` `ans = Math.floor(i * phi); ` ` `  `        ``// Print the nth numbers ` `        ``System.out.print((``int``)ans); ` ` `  `        ``if` `(i != n) ` `            ``System.out.print(``" , "``); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args)  ` `{ ` `    ``int` `n = ``5``; ` ` `  `    ``lowerWythoff(n); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# from math import sqrt,floor ` `from` `math ``import` `sqrt, floor ` ` `  `# Function to print the first n terms  ` `# of the lower Wythoff sequence  ` `def` `lowerWythoff(n) :  ` ` `  `    ``# Calculate value of phi  ` `    ``phi ``=` `(``1` `+` `sqrt(``5``)) ``/` `2``;  ` ` `  `    ``# Find the numbers  ` `    ``for` `i ``in` `range``(``1``, n ``+` `1``) : ` ` `  `        ``# a(n) = floor(n * phi)  ` `        ``ans ``=` `floor(i ``*` `phi);  ` ` `  `        ``# Print the nth numbers  ` `        ``print``(ans,end``=``"");  ` ` `  `        ``if` `(i !``=` `n) : ` `            ``print``( ``", "``,end ``=` `"");  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``n ``=` `5``;  ` `    ``lowerWythoff(n); ` ` `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `// Function to print the first n terms ` `// of the lower Wythoff sequence ` `static` `void` `lowerWythoff(``int` `n) ` `{ ` ` `  `    ``// Calculate value of phi ` `    ``double` `phi = (1 + Math.Sqrt(5)) / 2.0; ` ` `  `    ``// Find the numbers ` `    ``for` `(``int` `i = 1; i <= n; i++)  ` `    ``{ ` ` `  `        ``// a(n) = floor(n * phi) ` `        ``double` `ans = Math.Floor(i * phi); ` ` `  `        ``// Print the nth numbers ` `        ``Console.Write((``int``)ans); ` ` `  `        ``if` `(i != n) ` `            ``Console.Write(``" , "``); ` `    ``} ` `} ` ` `  `// Driver code ` `static` `public` `void` `Main () ` `{ ` `    ``int` `n = 5; ` ` `  `    ``lowerWythoff(n); ` `} ` `} ` ` `  `// This code is contributed by ajit. `

Output:

```1, 3, 4, 6, 8
```

My Personal Notes arrow_drop_up Second year Department of Information Technology Jadavpur University

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.