Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Print all the levels with odd and even number of nodes in it | Set-2

  • Last Updated : 10 Aug, 2021

Given an N-ary tree, print all the levels with odd and even number of nodes in it. 

Examples

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

For example consider the following tree
          1               - Level 1
       /     \
      2       3           - Level 2
    /   \       \
   4     5       6        - Level 3
        /  \     /
       7    8   9         - Level 4

The levels with odd number of nodes are: 1 3 4 
The levels with even number of nodes are: 2

Note: The level numbers starts from 1. That is, the root node is at the level 1.



Approach

  • Insert all the connecting nodes to a 2-D vector tree.
  • Run a BFS on the tree such that height[node] = 1 + height[parent]
  • Once BFS traversal is completed, increase the count[] array by 1, for every node’s level.
  • Iterate from first level to last level, and print all nodes with count[] values as odd to get level with odd number nodes.
  • Iterate from first level to last level, and print all nodes with count[] values as even to get level with even number nodes.

Below is the implementation of the above approach: 

C++




// C++ program to print all levels
// with odd and even number of nodes
 
#include <bits/stdc++.h>
using namespace std;
 
// Function for BFS in a tree
void bfs(int node, int parent, int height[], int vis[],
         vector<int> tree[])
{
 
    // mark first node as visited
    vis[node] = 1;
 
    // Declare Queue
    queue<int> q;
 
    // Push the first element
    q.push(1);
 
    // calculate the level of every node
    height[node] = 1 + height[parent];
 
    // Check if the queue is empty or not
    while (!q.empty()) {
 
        // Get the top element in the queue
        int top = q.front();
 
        // pop the element
        q.pop();
 
        // mark as visited
        vis[top] = 1;
 
        // Iterate for the connected nodes
        for (int i = 0; i < tree[top].size(); i++) {
 
            // if not visited
            if (!vis[tree[top][i]]) {
 
                // Insert into queue
                q.push(tree[top][i]);
 
                // Increase level
                height[tree[top][i]] = 1 + height[top];
            }
        }
    }
}
 
// Function to insert edges
void insertEdges(int x, int y, vector<int> tree[])
{
    tree[x].push_back(y);
    tree[y].push_back(x);
}
 
// Function to print all levels
void printLevelsOddEven(int N, int vis[], int height[])
{
    int mark[N + 1];
    memset(mark, 0, sizeof mark);
 
    int maxLevel = 0;
    for (int i = 1; i <= N; i++) {
 
        // count number of nodes
        // in every level
        if (vis[i])
            mark[height[i]]++;
 
        // find the maximum height of tree
        maxLevel = max(height[i], maxLevel);
    }
 
    // print odd number of nodes
    cout << "The levels with odd number of nodes are: ";
    for (int i = 1; i <= maxLevel; i++) {
        if (mark[i] % 2)
            cout << i << " ";
    }
 
    // print even number of nodes
    cout << "\nThe levels with even number of nodes are: ";
    for (int i = 1; i <= maxLevel; i++) {
        if (mark[i] % 2 == 0)
            cout << i << " ";
    }
}
 
// Driver Code
int main()
{
    // Construct the tree
 
    /*   1
       /   \
      2     3
     / \     \
    4    5    6
        / \  /
       7   8 9  */
 
    const int N = 9;
 
    vector<int> tree[N + 1];
 
    insertEdges(1, 2, tree);
    insertEdges(1, 3, tree);
    insertEdges(2, 4, tree);
    insertEdges(2, 5, tree);
    insertEdges(5, 7, tree);
    insertEdges(5, 8, tree);
    insertEdges(3, 6, tree);
    insertEdges(6, 9, tree);
 
    int height[N + 1];
    int vis[N + 1] = { 0 };
 
    // call the bfs function
    bfs(1, 0, height, vis, tree);
 
    // Function to print
    printLevelsOddEven(N, vis, height);
 
    return 0;
}

Java




// Java program to print all levels
// with odd and even number of nodes
import java.util.*;
public class Main
{
    // Function for BFS in a tree
    static void bfs(int node, int parent, int[] height, int[] vis, Vector<Vector<Integer>> tree)
    {
        // Mark first node as visited
        vis[node] = 1;
       
        // Declare Queue
        Queue<Integer> q = new LinkedList<>();
       
        // Push the first element
        q.add(1);
       
        // Calculate the level of every node
        height[node] = 1 + height[parent];
       
        // Check if the queue is empty or not
        while (q.size() != 0)
        {
              
            // Get the top element in the queue
            int top = (int)q.peek();
       
            // Pop the element
            q.remove();
       
            // Mark as visited
            vis[top] = 1;
       
            // Iterate for the connected nodes
            for(int i = 0; i < tree.get(top).size(); i++)
            {
                  
                // If not visited
                if (vis[(int)tree.get(top).get(i)] == 0)
                {
                      
                    // Insert into queue
                    q.add(tree.get(top).get(i));
       
                    // Increase level
                    height[(int)tree.get(top).get(i)] = 1 + height[top];
                }
            }
        }
    }
       
    // Function to insert edges
    static void insertEdges(int x, int y, Vector<Vector<Integer>> tree)
    {
        tree.get(x).add(y);
        tree.get(y).add(x);
    }
       
    // Function to print all levels
    static void printLevelsOddEven(int N, int[] vis, int[] height)
    {
        int[] mark = new int[N + 1];
        for(int i = 0; i < N + 1; i++)
        {
            mark[i] = 0;
        }
       
        int maxLevel = 0;
        for(int i = 1; i <= N; i++)
        {
              
            // Count number of nodes
            // in every level
            if (vis[i]!=0)
                mark[height[i]]++;
       
            // Find the maximum height of tree
            maxLevel = Math.max(height[i], maxLevel);
        }
       
        // Print odd number of nodes
        System.out.print("The levels with odd " +
                      "number of nodes are: ");
          
        for(int i = 1; i <= maxLevel; i++)
        {
            if (mark[i] % 2 != 0)
            {
                System.out.print(i + " ");
            }
        }
       
        // print even number of nodes
        System.out.println();
        System.out.print("The levels with even " +
                      "number of nodes are: ");
          
        for(int i = 1; i <= maxLevel; i++)
        {
            if (mark[i] % 2 == 0)
            {
                System.out.print(i + " ");
            }
        }
    }
 
    public static void main(String[] args) {
        // Construct the tree
      
        /*   1
           /   \
          2     3
         / \     \
        4    5    6
            / \  /
           7   8 9  */
          
        int N = 9;
          
        Vector<Vector<Integer>> tree = new Vector<Vector<Integer>>();
          
        for(int i = 0; i < N + 1; i++)
        {
            tree.add(new Vector<Integer>());
        }
          
        insertEdges(1, 2, tree);
        insertEdges(1, 3, tree);
        insertEdges(2, 4, tree);
        insertEdges(2, 5, tree);
        insertEdges(5, 7, tree);
        insertEdges(5, 8, tree);
        insertEdges(3, 6, tree);
        insertEdges(6, 9, tree);
          
        int[] height = new int[N + 1];
        int[] vis = new int[N + 1];
        for(int i = 0; i < N + 1; i++)
        {
            vis[i] = 0;
        }
          
        height[0] = 0;
          
        // Call the bfs function
        bfs(1, 0, height, vis, tree);
          
        // Function to print
        printLevelsOddEven(N, vis, height);
    }
}
 
// This code is contributed by divyeshrabadiya07.

Python3




# Python3 program to print all levels
# with odd and even number of nodes
 
# Function for BFS in a tree
def bfs(node, parent, height, vis, tree):
 
    # mark first node as visited
    vis[node] = 1
 
    # Declare Queue
    q = []
 
    # append the first element
    q.append(1)
 
    # calculate the level of every node
    height[node] = 1 + height[parent]
 
    # Check if the queue is empty or not
    while (len(q)):
 
        # Get the top element in
        # the queue
        top = q[0]
 
        # pop the element
        q.pop(0)
 
        # mark as visited
        vis[top] = 1
 
        # Iterate for the connected nodes
        for i in range(len(tree[top])):
             
            # if not visited
            if (not vis[tree[top][i]]):
 
                # Insert into queue
                q.append(tree[top][i])
 
                # Increase level
                height[tree[top][i]] = 1 + height[top]
 
# Function to insert edges
def insertEdges(x, y, tree):
 
    tree[x].append(y)
    tree[y].append(x)
     
# Function to print all levels
def printLevelsOddEven(N, vis, height):
 
    mark = [0] * (N + 1)
 
    maxLevel = 0
    for i in range(1, N + 1):
 
        # count number of nodes
        # in every level
        if (vis[i]) :
            mark[height[i]] += 1
 
        # find the maximum height of tree
        maxLevel = max(height[i], maxLevel)
     
    # prodd number of nodes
    print("The levels with odd number",
          "of nodes are:", end = " ")
    for i in range(1, maxLevel + 1):
        if (mark[i] % 2):
            print(i, end = " " )
     
    # print even number of nodes
    print("\nThe levels with even number",
            "of nodes are:", end = " ")
    for i in range(1, maxLevel ):
        if (mark[i] % 2 == 0):
            print(i, end = " ")
 
# Driver Code
if __name__ == '__main__':
     
    # Construct the tree
    """ 1
    / \
    2 3
    / \ \
    4 5 6
        / \ /
    7 8 9 """
 
    N = 9
 
    tree = [[0]] * (N + 1)
 
    insertEdges(1, 2, tree)
    insertEdges(1, 3, tree)
    insertEdges(2, 4, tree)
    insertEdges(2, 5, tree)
    insertEdges(5, 7, tree)
    insertEdges(5, 8, tree)
    insertEdges(3, 6, tree)
    insertEdges(6, 9, tree)
 
    height = [0] * (N + 1)
    vis = [0] * (N + 1)
 
    # call the bfs function
    bfs(1, 0, height, vis, tree)
 
    # Function to pr
    printLevelsOddEven(N, vis, height)
 
# This code is contributed
# by SHUBHAMSINGH10

C#




// C# program to print all levels
// with odd and even number of nodes
using System;
using System.Collections;
 
class GFG{
 
// Function for BFS in a tree
static void bfs(int node, int parent,
                int []height, int []vis,
                ArrayList []tree)
{
     
    // Mark first node as visited
    vis[node] = 1;
  
    // Declare Queue
    Queue q = new Queue();
  
    // Push the first element
    q.Enqueue(1);
  
    // Calculate the level of every node
    height[node] = 1 + height[parent];
  
    // Check if the queue is empty or not
    while (q.Count != 0)
    {
         
        // Get the top element in the queue
        int top = (int)q.Peek();
  
        // Pop the element
        q.Dequeue();
  
        // Mark as visited
        vis[top] = 1;
  
        // Iterate for the connected nodes
        for(int i = 0; i < tree[top].Count; i++)
        {
             
            // If not visited
            if (vis[(int)tree[top][i]] == 0)
            {
                 
                // Insert into queue
                q.Enqueue(tree[top][i]);
  
                // Increase level
                height[(int)tree[top][i]] = 1 + height[top];
            }
        }
    }
}
  
// Function to insert edges
static void insertEdges(int x, int y, ArrayList []tree)
{
    tree[x].Add(y);
    tree[y].Add(x);
}
  
// Function to print all levels
static void printLevelsOddEven(int N, int []vis,
                               int []height)
{
    int []mark = new int[N + 1];
    Array.Fill(mark, 0);
  
    int maxLevel = 0;
    for(int i = 1; i <= N; i++)
    {
         
        // Count number of nodes
        // in every level
        if (vis[i]!=0)
            mark[height[i]]++;
  
        // Find the maximum height of tree
        maxLevel = Math.Max(height[i], maxLevel);
    }
  
    // Print odd number of nodes
    Console.Write("The levels with odd " +
                  "number of nodes are: ");
     
    for(int i = 1; i <= maxLevel; i++)
    {
        if (mark[i] % 2 != 0)
        {
            Console.Write(i + " ");
        }
    }
  
    // print even number of nodes
    Console.Write("\nThe levels with even " +
                  "number of nodes are: ");
     
    for(int i = 1; i <= maxLevel; i++)
    {
        if (mark[i] % 2 == 0)
        {
            Console.Write(i + " ");
        }
    }
}
     
// Driver code   
static void Main()
{
       
    // Construct the tree
     
    /*   1
       /   \
      2     3
     / \     \
    4    5    6
        / \  /
       7   8 9  */
     
    int N = 9;
     
    ArrayList []tree = new ArrayList[N + 1];
     
    for(int i = 0; i < N + 1; i++)
    {
        tree[i] = new ArrayList();
    }
     
    insertEdges(1, 2, tree);
    insertEdges(1, 3, tree);
    insertEdges(2, 4, tree);
    insertEdges(2, 5, tree);
    insertEdges(5, 7, tree);
    insertEdges(5, 8, tree);
    insertEdges(3, 6, tree);
    insertEdges(6, 9, tree);
     
    int []height = new int[N + 1];
    int []vis = new int[N + 1];
    Array.Fill(vis, 0);
     
    height[0] = 0;
     
    // Call the bfs function
    bfs(1, 0, height, vis, tree);
     
    // Function to print
    printLevelsOddEven(N, vis, height);
}
}
 
// This code is contributed by rutvik_56

Javascript




<script>
 
    // JavaScript program to print all levels
    // with odd and even number of nodes
     
    // Function for BFS in a tree
    function bfs(node, parent, height, vis, tree)
    {
 
        // Mark first node as visited
        vis[node] = 1;
 
        // Declare Queue
        let q = [];
 
        // Push the first element
        q.push(1);
 
        // Calculate the level of every node
        height[node] = 1 + height[parent];
 
        // Check if the queue is empty or not
        while (q.length != 0)
        {
 
            // Get the top element in the queue
            let top = q[0];
 
            // Pop the element
            q.shift();
 
            // Mark as visited
            vis[top] = 1;
 
            // Iterate for the connected nodes
            for(let i = 0; i < tree[top].length; i++)
            {
 
                // If not visited
                if (vis[tree[top][i]] == 0)
                {
 
                    // Insert into queue
                    q.push(tree[top][i]);
 
                    // Increase level
                    height[tree[top][i]] = 1 + height[top];
                }
            }
        }
    }
 
    // Function to insert edges
    function insertEdges(x, y, tree)
    {
        tree[x].push(y);
        tree[y].push(x);
    }
 
    // Function to print all levels
    function printLevelsOddEven(N, vis, height)
    {
        let mark = new Array(N + 1);
        mark.fill(0);
 
        let maxLevel = 0;
        for(let i = 1; i <= N; i++)
        {
 
            // Count number of nodes
            // in every level
            if (vis[i]!=0)
                mark[height[i]]++;
 
            // Find the maximum height of tree
            maxLevel = Math.max(height[i], maxLevel);
        }
 
        // Print odd number of nodes
        document.write("The levels with odd " +
                      "number of nodes are: ");
 
        for(let i = 1; i <= maxLevel; i++)
        {
            if (mark[i] % 2 != 0)
            {
                document.write(i + " ");
            }
        }
 
        // print even number of nodes
           document.write("</br>" + "The levels with even " +
                      "number of nodes are: ");
 
        for(let i = 1; i <= maxLevel; i++)
        {
            if (mark[i] % 2 == 0)
            {
                document.write(i + " ");
            }
        }
    }
     
    // Construct the tree
      
    /*   1
       /   \
      2     3
     / \     \
    4    5    6
        / \  /
       7   8 9  */
      
    let N = 9;
      
    let tree = new Array(N + 1);
      
    for(let i = 0; i < N + 1; i++)
    {
        tree[i] = [];
    }
      
    insertEdges(1, 2, tree);
    insertEdges(1, 3, tree);
    insertEdges(2, 4, tree);
    insertEdges(2, 5, tree);
    insertEdges(5, 7, tree);
    insertEdges(5, 8, tree);
    insertEdges(3, 6, tree);
    insertEdges(6, 9, tree);
      
    let height = new Array(N + 1);
    let vis = new Array(N + 1);
    vis.fill(0);
      
    height[0] = 0;
      
    // Call the bfs function
    bfs(1, 0, height, vis, tree);
      
    // Function to print
    printLevelsOddEven(N, vis, height);
 
</script>
Output: 
The levels with odd number of nodes are: 1 3 4 
The levels with even number of nodes are: 2

 

Time Complexity: O(N) 
Auxiliary Space: O(N)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!