Given an array arr[] of size N and an integer K, the task is to print all possible ways to split the given array into K subsets.
Examples:
Input: arr[] = { 1, 2, 3 }, K = 2
Output: { {{ 1, 2 }, { 3 }}, {{ 1, 3 }, { 2 }}, {{ 1 }, { 2, 3 }}}.
Input: arr[] = { 1, 2, 3, 4 }, K = 2
Output: { {{ 1, 2, 3 }, { 4 }}, {{ 1, 2, 4 }, { 3 }}, {{ 1, 2 }, { 3, 4 }}, {{ 1, 3, 4 }, { 2 }}, {{ 1, 3 }, { 2, 4 }}, {{ 1, 4 }, { 2, 3 }}, {{ 1 }, { 2 3, 4 }} }
Approach: The problem can be solved using backtracking to generate and print all the subsets. Follow the steps below to solve the problem:
- Traverse the array and insert elements into any one of the K subsets using the following recurrence relation:
PartitionSub(i, K, N)
{
for (j = 0; j < K; j++) {
sub[j].push_back(arr[i])
PartitionSub(i + 1, K, N)
sub[j].pop_back()
}
}
-
- If K is equal to 0 or K > N, then subsets cannot be generated.
- If count of array elements inserted into K subsets equal to N, then print the elements of the subset.
C++
#include <bits/stdc++.h>
using namespace std;
void PartitionSub( int arr[], int i,
int N, int K, int nos,
vector<vector< int > >& v)
{
if (i >= N) {
if (nos == K) {
for ( int x = 0; x < v.size(); x++) {
cout << "{ " ;
for ( int y = 0; y < v[x].size(); y++) {
cout << v[x][y];
if (y == v[x].size() - 1) {
cout << " " ;
}
else {
cout << ", " ;
}
}
if (x == v.size() - 1) {
cout << "}" ;
}
else {
cout << "}, " ;
}
}
cout << endl;
}
return ;
}
for ( int j = 0; j < K; j++) {
if (v[j].size() > 0) {
v[j].push_back(arr[i]);
PartitionSub(arr, i + 1, N, K, nos, v);
v[j].pop_back();
}
else {
v[j].push_back(arr[i]);
PartitionSub(arr, i + 1, N, K, nos + 1, v);
v[j].pop_back();
break ;
}
}
}
void partKSubsets( int arr[], int N, int K)
{
vector<vector< int > > v(K);
if (K == 0 || K > N) {
cout << "Not Possible" << endl;
}
else {
cout << "The Subset Combinations are: " << endl;
PartitionSub(arr, 0, N, K, 0, v);
}
}
int main()
{
int arr[] = { 1, 2, 3, 4 };
int K = 2;
int N = sizeof (arr) / sizeof (arr[0]);
partKSubsets(arr, N, K);
}
|
Java
import java.util.*;
import java.lang.*;
class Gfg
{
static void PartitionSub( int arr[], int i,
int N, int K, int nos,
ArrayList<ArrayList<Integer>> v)
{
if (i >= N)
{
if (nos == K)
{
for ( int x = 0 ; x < v.size(); x++)
{
System.out.print( "{ " );
for ( int y = 0 ; y < v.get(x).size(); y++)
{
System.out.print(v.get(x).get(y));
if (y == v.get(x).size() - 1 )
{
System.out.print( " " );
}
else
{
System.out.print( ", " );
}
}
if (x == v.size() - 1 )
{
System.out.print( "}" );
}
else
{
System.out.print( "}, " );
}
}
System.out.println();;
}
return ;
}
for ( int j = 0 ; j < K; j++)
{
if (v.get(j).size() > 0 )
{
v.get(j).add(arr[i]);
PartitionSub(arr, i + 1 , N, K, nos, v);
v.get(j).remove(v.get(j).size()- 1 );
}
else
{
v.get(j).add(arr[i]);
PartitionSub(arr, i + 1 , N, K, nos + 1 , v);
v.get(j).remove(v.get(j).size()- 1 );
break ;
}
}
}
static void partKSubsets( int arr[], int N, int K)
{
ArrayList<ArrayList<Integer>> v = new ArrayList<>();
for ( int i = 0 ; i < K; i++)
v.add( new ArrayList<>());
if (K == 0 || K > N)
{
System.out.println( "Not Possible" );
}
else
{
System.out.println( "The Subset Combinations are: " );
PartitionSub(arr, 0 , N, K, 0 , v);
}
}
public static void main (String[] args)
{
int arr[] = { 1 , 2 , 3 , 4 };
int K = 2 ;
int N = arr.length;
partKSubsets(arr, N, K);
}
}
|
Python3
def PartitionSub(arr, i, N, K, nos, v):
if (i > = N):
if (nos = = K):
for x in range ( len (v)):
print ( "{ " , end = "")
for y in range ( len (v[x])):
print (v[x][y], end = "")
if (y = = len (v[x]) - 1 ):
print ( " " , end = "")
else :
print ( ", " , end = "")
if (x = = len (v) - 1 ):
print ( "}" , end = "")
else :
print ( "}, " , end = "")
print ( "\n" , end = "")
return
for j in range (K):
if ( len (v[j]) > 0 ):
v[j].append(arr[i])
PartitionSub(arr, i + 1 , N, K, nos, v)
v[j].remove(v[j][ len (v[j]) - 1 ])
else :
v[j].append(arr[i])
PartitionSub(arr, i + 1 , N, K, nos + 1 , v)
v[j].remove(v[j][ len (v[j]) - 1 ])
break
def partKSubsets(arr, N, K):
v = [[] for i in range (K)]
if (K = = 0 or K > N):
print ( "Not Possible" , end = "")
else :
print ( "The Subset Combinations are: " )
PartitionSub(arr, 0 , N, K, 0 , v)
if __name__ = = '__main__' :
arr = [ 1 , 2 , 3 , 4 ]
K = 2
N = len (arr)
partKSubsets(arr, N, K)
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static void PartitionSub( int []arr, int i,
int N, int K, int nos,
List<List< int >>v)
{
if (i >= N) {
if (nos == K) {
for ( int x = 0; x < v.Count; x++) {
Console.Write( "{ " );
for ( int y = 0; y < v[x].Count; y++) {
Console.Write(v[x][y]);
if (y == v[x].Count - 1) {
Console.Write( " " );
}
else {
Console.Write( ", " );
}
}
if (x == v.Count - 1) {
Console.Write( "}" );
}
else {
Console.Write( "}, " );
}
}
Console.Write( "\n" );
}
return ;
}
for ( int j = 0; j < K; j++) {
if (v[j].Count > 0) {
v[j].Add(arr[i]);
PartitionSub(arr, i + 1, N, K, nos, v);
v[j].RemoveAt(v[j].Count - 1);
}
else {
v[j].Add(arr[i]);
PartitionSub(arr, i + 1, N, K, nos + 1, v);
v[j].RemoveAt(v[j].Count - 1);
break ;
}
}
}
static void partKSubsets( int []arr, int N, int K)
{
List<List< int > > v = new List<List< int >>();
for ( int i=0;i<K;i++)
v.Add( new List< int >());
if (K == 0 || K > N) {
Console.WriteLine( "Not Possible" );
}
else {
Console.WriteLine( "The Subset Combinations are: " );
PartitionSub(arr, 0, N, K, 0, v);
}
}
public static void Main()
{
int []arr = {1, 2, 3, 4};
int K = 2;
int N = arr.Length;
partKSubsets(arr, N, K);
}
}
|
Javascript
<script>
function PartitionSub(arr, i, N, K, nos, v)
{
if (i >= N)
{
if (nos == K)
{
for (let x = 0; x < v.length; x++)
{
document.write( "{ " );
for (let y = 0; y < v[x].length; y++)
{
document.write(v[x][y]);
if (y == v[x].length - 1)
{
document.write( " " );
}
else
{
document.write( ", " );
}
}
if (x == v.length - 1)
{
document.write( "}" );
}
else
{
document.write( "}, " );
}
}
document.write( "</br>" );
}
return ;
}
for (let j = 0; j < K; j++)
{
if (v[j].length > 0)
{
v[j].push(arr[i]);
PartitionSub(arr, i + 1, N, K, nos, v);
v[j].pop();
}
else
{
v[j].push(arr[i]);
PartitionSub(arr, i + 1, N, K, nos + 1, v);
v[j].pop();
break ;
}
}
}
function partKSubsets(arr, N, K)
{
let v = [];
for (let i = 0; i < K; i++)
v.push([]);
if (K == 0 || K > N)
{
document.write( "Not Possible" + "</br>" );
}
else
{
document.write( "The Subset Combinations are: " + "</br>" );
PartitionSub(arr, 0, N, K, 0, v);
}
}
let arr = [ 1, 2, 3, 4 ];
let K = 2;
let N = arr.length;
partKSubsets(arr, N, K);
</script>
|
Output
The Subset Combinations are:
{ 1, 2, 3 }, { 4 }
{ 1, 2, 4 }, { 3 }
{ 1, 2 }, { 3, 4 }
{ 1, 3, 4 }, { 2 }
{ 1, 3 }, { 2, 4 }
{ 1, 4 }, { 2, 3 }
{ 1 }, { 2, 3, 4 }
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
26 Dec, 2022
Like Article
Save Article