Related Articles

# Print all multiplicative primes <= N

• Last Updated : 20 Apr, 2021

Given an integer N, the task is to print all the multiplicative primes ≤ N.

Multiplicative Primes are the primes such that the product of their digits is also a prime. For example; 2, 3, 7, 13, 17, …

Examples:

Input: N = 10
Output: 2 3 5 7
Input: N = 3
Output: 2 3

Approach: Using Sieve of Eratosthenes check for all the primes ≤ N whether they are multiplicative primes i.e. product of their digits is also a prime. If yes then print those multiplicative primes.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the digit product of n``int` `digitProduct(``int` `n)``{``    ``int` `prod = 1;``    ``while` `(n) {``        ``prod = prod * (n % 10);``        ``n = n / 10;``    ``}` `    ``return` `prod;``}` `// Function to print all multiplicative primes <= n``void` `printMultiplicativePrimes(``int` `n)``{``    ``// Create a boolean array "prime[0..n+1]". A``    ``// value in prime[i] will finally be false``    ``// if i is Not a prime, else true.``    ``bool` `prime[n + 1];``    ``memset``(prime, ``true``, ``sizeof``(prime));` `    ``prime = prime = ``false``;``    ``for` `(``int` `p = 2; p * p <= n; p++) {` `        ``// If prime[p] is not changed, then``        ``// it is a prime``        ``if` `(prime[p]) {` `            ``// Update all multiples of p``            ``for` `(``int` `i = p * 2; i <= n; i += p)``                ``prime[i] = ``false``;``        ``}``    ``}` `    ``for` `(``int` `i = 2; i <= n; i++) {` `        ``// If i is prime and its digit sum is also prime``        ``// i.e. i is a multiplicative prime``        ``if` `(prime[i] && prime[digitProduct(i)])``            ``cout << i << ``" "``;``    ``}``}` `// Driver code``int` `main()``{``    ``int` `n = 10;``    ``printMultiplicativePrimes(n);``}`

## Java

 `// Java implementation of the approach``import` `java.io.*;` `class` `GFG``{` `// Function to return the digit product of n``static` `int` `digitProduct(``int` `n)``{``    ``int` `prod = ``1``;``    ``while` `(n > ``0``)``    ``{``        ``prod = prod * (n % ``10``);``        ``n = n / ``10``;``    ``}``    ``return` `prod;``}` `// Function to print all multiplicative primes <= n``static` `void` `printMultiplicativePrimes(``int` `n)``{``    ``// Create a boolean array "prime[0..n+1]". A``    ``// value in prime[i] will finally be false``    ``// if i is Not a prime, else true.``    ``boolean` `prime[] = ``new` `boolean``[n + ``1` `];``    ``for``(``int` `i = ``0``; i <= n; i++)``     ``prime[i] = ``true``;` `    ``prime[``0``] = prime[``1``] = ``false``;``    ``for` `(``int` `p = ``2``; p * p <= n; p++)``    ``{` `        ``// If prime[p] is not changed, then``        ``// it is a prime``        ``if` `(prime[p])``        ``{` `            ``// Update all multiples of p``            ``for` `(``int` `i = p * ``2``; i <= n; i += p)``                ``prime[i] = ``false``;``        ``}``    ``}` `    ``for` `(``int` `i = ``2``; i <= n; i++)``    ``{` `        ``// If i is prime and its digit sum is also prime``        ``// i.e. i is a multiplicative prime``        ``if` `(prime[i] && prime[digitProduct(i)])``            ``System.out.print( i + ``" "``);``    ``}``}` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `n = ``10``;``        ``printMultiplicativePrimes(n);``    ``}``}` `// This code is contributed by shs..`

## Python3

 `# Python 3 implementation of the approach``from` `math ``import` `sqrt` `# Function to return the digit product of n``def` `digitProduct(n):``    ``prod ``=` `1``    ``while` `(n):``        ``prod ``=` `prod ``*` `(n ``%` `10``)``        ``n ``=` `int``(n ``/` `10``)` `    ``return` `prod` `# Function to print all multiplicative``# primes <= n``def` `printMultiplicativePrimes(n):``    ` `    ``# Create a boolean array "prime[0..n+1]".``    ``# A value in prime[i] will finally be``    ``# false if i is Not a prime, else true.``    ``prime ``=` `[``True` `for` `i ``in` `range``(n ``+` `1``)]` `    ``prime[``0``] ``=` `prime[``1``] ``=` `False``    ``for` `p ``in` `range``(``2``, ``int``(sqrt(n)) ``+` `1``, ``1``):``        ` `        ``# If prime[p] is not changed,``        ``# then it is a prime``        ``if` `(prime[p]):``            ` `            ``# Update all multiples of p``            ``for` `i ``in` `range``(p ``*` `2``, n ``+` `1``, p):``                ``prime[i] ``=` `False``        ` `    ``for` `i ``in` `range``(``2``, n ``+` `1``, ``1``):``        ` `        ``# If i is prime and its digit sum``        ``# is also prime i.e. i is a``        ``# multiplicative prime``        ``if` `(prime[i] ``and` `prime[digitProduct(i)]):``            ``print``(i, end ``=` `" "``)` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``n ``=` `10``    ``printMultiplicativePrimes(n)` `# This code is contributed by``# Surendra_Gangwar`

## C#

 `// C# implementation of the approach``class` `GFG``{` `// Function to return the digit product of n``static` `int` `digitProduct(``int` `n)``{``    ``int` `prod = 1;``    ``while` `(n > 0)``    ``{``        ``prod = prod * (n % 10);``        ``n = n / 10;``    ``}``    ``return` `prod;``}` `// Function to print all multiplicative primes <= n``static` `void` `printMultiplicativePrimes(``int` `n)``{``    ``// Create a boolean array "prime[0..n+1]". A``    ``// value in prime[i] will finally be false``    ``// if i is Not a prime, else true.``    ``bool``[] prime = ``new` `bool``[n + 1 ];``    ` `    ``for``(``int` `i = 0; i <= n; i++)``        ``prime[i] = ``true``;` `    ``prime = prime = ``false``;``    ``for` `(``int` `p = 2; p * p <= n; p++)``    ``{` `        ``// If prime[p] is not changed, then``        ``// it is a prime``        ``if` `(prime[p])``        ``{` `            ``// Update all multiples of p``            ``for` `(``int` `i = p * 2; i <= n; i += p)``                ``prime[i] = ``false``;``        ``}``    ``}` `    ``for` `(``int` `i = 2; i <= n; i++)``    ``{` `        ``// If i is prime and its digit sum is also prime``        ``// i.e. i is a multiplicative prime``        ``if` `(prime[i] && prime[digitProduct(i)])``            ``System.Console.Write( i + ``" "``);``    ``}``}` `    ``// Driver code``    ``static` `void` `Main()``    ``{``        ``int` `n = 10;``        ``printMultiplicativePrimes(n);``    ``}``}` `// This code is contributed by chandan_jnu`

## PHP

 ``

## Javascript

 ``
Output:
`2 3 5 7`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up