Skip to content
Related Articles

Related Articles

Improve Article

Print all multiplicative primes <= N

  • Last Updated : 20 Apr, 2021

Given an integer N, the task is to print all the multiplicative primes ≤ N.
 

Multiplicative Primes are the primes such that the product of their digits is also a prime. For example; 2, 3, 7, 13, 17, … 
 

Examples: 
 

Input: N = 10 
Output: 2 3 5 7
Input: N = 3 
Output: 2 3 
 

 



Approach: Using Sieve of Eratosthenes check for all the primes ≤ N whether they are multiplicative primes i.e. product of their digits is also a prime. If yes then print those multiplicative primes.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the digit product of n
int digitProduct(int n)
{
    int prod = 1;
    while (n) {
        prod = prod * (n % 10);
        n = n / 10;
    }
 
    return prod;
}
 
// Function to print all multiplicative primes <= n
void printMultiplicativePrimes(int n)
{
    // Create a boolean array "prime[0..n+1]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    bool prime[n + 1];
    memset(prime, true, sizeof(prime));
 
    prime[0] = prime[1] = false;
    for (int p = 2; p * p <= n; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p]) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
 
    for (int i = 2; i <= n; i++) {
 
        // If i is prime and its digit sum is also prime
        // i.e. i is a multiplicative prime
        if (prime[i] && prime[digitProduct(i)])
            cout << i << " ";
    }
}
 
// Driver code
int main()
{
    int n = 10;
    printMultiplicativePrimes(n);
}

Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
 
// Function to return the digit product of n
static int digitProduct(int n)
{
    int prod = 1;
    while (n > 0)
    {
        prod = prod * (n % 10);
        n = n / 10;
    }
    return prod;
}
 
// Function to print all multiplicative primes <= n
static void printMultiplicativePrimes(int n)
{
    // Create a boolean array "prime[0..n+1]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    boolean prime[] = new boolean[n + 1 ];
    for(int i = 0; i <= n; i++)
     prime[i] = true;
 
    prime[0] = prime[1] = false;
    for (int p = 2; p * p <= n; p++)
    {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p])
        {
 
            // Update all multiples of p
            for (int i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
 
    for (int i = 2; i <= n; i++)
    {
 
        // If i is prime and its digit sum is also prime
        // i.e. i is a multiplicative prime
        if (prime[i] && prime[digitProduct(i)])
            System.out.print( i + " ");
    }
}
 
    // Driver code
    public static void main (String[] args)
    {
        int n = 10;
        printMultiplicativePrimes(n);
    }
}
 
// This code is contributed by shs..

Python3




# Python 3 implementation of the approach
from math import sqrt
 
# Function to return the digit product of n
def digitProduct(n):
    prod = 1
    while (n):
        prod = prod * (n % 10)
        n = int(n / 10)
 
    return prod
 
# Function to print all multiplicative
# primes <= n
def printMultiplicativePrimes(n):
     
    # Create a boolean array "prime[0..n+1]".
    # A value in prime[i] will finally be
    # false if i is Not a prime, else true.
    prime = [True for i in range(n + 1)]
 
    prime[0] = prime[1] = False
    for p in range(2, int(sqrt(n)) + 1, 1):
         
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p]):
             
            # Update all multiples of p
            for i in range(p * 2, n + 1, p):
                prime[i] = False
         
    for i in range(2, n + 1, 1):
         
        # If i is prime and its digit sum
        # is also prime i.e. i is a
        # multiplicative prime
        if (prime[i] and prime[digitProduct(i)]):
            print(i, end = " ")
 
# Driver code
if __name__ == '__main__':
    n = 10
    printMultiplicativePrimes(n)
 
# This code is contributed by
# Surendra_Gangwar

C#




// C# implementation of the approach
class GFG
{
 
// Function to return the digit product of n
static int digitProduct(int n)
{
    int prod = 1;
    while (n > 0)
    {
        prod = prod * (n % 10);
        n = n / 10;
    }
    return prod;
}
 
// Function to print all multiplicative primes <= n
static void printMultiplicativePrimes(int n)
{
    // Create a boolean array "prime[0..n+1]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    bool[] prime = new bool[n + 1 ];
     
    for(int i = 0; i <= n; i++)
        prime[i] = true;
 
    prime[0] = prime[1] = false;
    for (int p = 2; p * p <= n; p++)
    {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p])
        {
 
            // Update all multiples of p
            for (int i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
 
    for (int i = 2; i <= n; i++)
    {
 
        // If i is prime and its digit sum is also prime
        // i.e. i is a multiplicative prime
        if (prime[i] && prime[digitProduct(i)])
            System.Console.Write( i + " ");
    }
}
 
    // Driver code
    static void Main()
    {
        int n = 10;
        printMultiplicativePrimes(n);
    }
}
 
// This code is contributed by chandan_jnu

PHP




<?php
// PHP implementation of the approach
 
// Function to return the digit product of n
function digitProduct($n)
{
    $prod = 1;
    while ($n)
    {
        $prod = $prod * ($n % 10);
        $n = floor($n / 10);
    }
 
    return $prod;
}
 
// Function to print all multiplicative
// primes <= n
function printMultiplicativePrimes($n)
{
    // Create a boolean array "prime[0..n+1]".
    // A value in prime[i] will finally be
    // false if i is Not a prime, else true.
    $prime = array_fill(0, $n + 1, true);
     
    $prime[0] = $prime[1] = false;
    for ($p = 2; $p * $p <= $n; $p++)
    {
 
        // If prime[p] is not changed, then
        // it is a prime
        if ($prime[$p])
        {
 
            // Update all multiples of p
            for ($i = $p * 2; $i <= $n; $i += $p)
                $prime[$i] = false;
        }
    }
 
    for ($i = 2; $i <= $n; $i++)
    {
 
        // If i is prime and its digit sum is also
        // prime i.e. i is a multiplicative prime
        if ($prime[$i] && $prime[digitProduct($i)])
            echo $i, " ";
    }
}
 
// Driver code
$n = 10;
printMultiplicativePrimes($n);
 
// This code is contributed by Ryuga.
?>

Javascript




<script>
// Javascript implementation of the approach
     
    // Function to return the digit product of n
    function digitProduct(n)
    {
        let prod = 1;
        while (n > 0)
        {
            prod = prod * (n % 10);
            n = Math.floor(n / 10);
        }
        return prod;
    }
     
    // Function to print all
    // multiplicative primes <= n
    function printMultiplicativePrimes(n)
    {
        // Create a boolean array "prime[0..n+1]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        let prime = new Array(n + 1);
        for(let i = 0; i <= n; i++)
            prime[i] = true;
       
        prime[0] = prime[1] = false;
        for (let p = 2; p * p <= n; p++)
        {
       
            // If prime[p] is not changed, then
            // it is a prime
            if (prime[p])
            {
       
                // Update all multiples of p
                for (let i = p * 2; i <= n; i += p)
                    prime[i] = false;
            }
        }
       
        for (let i = 2; i <= n; i++)
        {
       
            // If i is prime and its digit sum is also prime
            // i.e. i is a multiplicative prime
            if (prime[i] && prime[digitProduct(i)])
                document.write( i + " ");
        }
    }
     
    // Driver code
    let n = 10;
    printMultiplicativePrimes(n);
     
    // This code is contributed by unknown2108
     
</script>
Output: 
2 3 5 7

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :