Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Print all maximal increasing contiguous sub-array in an array

  • Last Updated : 02 Jun, 2021

Given an array arr[], the task is to find all the maximal contiguous increasing subarray in a given array. 

Examples

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: 
arr[] = { 80, 50, 60, 70, 40, 50, 80, 70 } 
Output: 
80 
50 60 70 
40 50 80 
70



Input: 
arr[] = { 10, 20, 23, 12, 5, 4, 61, 67, 87, 9 } 
Output: 
10 20 23 
12 

4 61 67 87 
9

Approach: Iterate over the array and compare every element with its next neighboring element such that, if it is less than the next element, print it, else print it individually on the next line.
Below is the implementation of the above approach. 

C++




// C++ Implementation to print all the
// Maximal Increasing Sub-array of array
#include <bits/stdc++.h>
using namespace std;
 
// Function to print each of maximal
// contiguous increasing subarray
void printmaxSubseq(int arr[], int n)
{
    int i;
 
    // Loop to iterate through the array and print
    // the maximal contiguous increasing subarray.
    for (i = 0; i < n; i++) {
        // Condition to check whether the element at i, is
        // greater than its next neighbouring element or not.
        if (arr[i] < arr[i + 1])
            cout << arr[i] << " ";
        else
            cout << arr[i] << "\n";
    }
}
 
// Driver function
int main()
{
    int arr[] = { 9, 8, 11, 13, 10, 15, 14, 16, 20, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
    printmaxSubseq(arr, n);
    return 0;
}

Java




// Java Implementation to print all the
// Maximal Increasing Sub-array of array
import java.util.*;
 
class GFG
{
 
// Function to print each of maximal
// contiguous increasing subarray
static void printmaxSubseq(int arr[], int n)
{
    int i;
 
    // Loop to iterate through the array and print
    // the maximal contiguous increasing subarray.
    for (i = 0; i < n ; i++)
    {
        // Condition to check whether the element at i, is
        // greater than its next neighbouring element or not.
        if (i + 1 < n && arr[i] < arr[i + 1])
            System.out.print(arr[i] + " ");
        else
            System.out.print(arr[i] + "\n");
    }
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 9, 8, 11, 13, 10, 15, 14, 16, 20, 5 };
    int n = arr.length;
    printmaxSubseq(arr, n);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 Implementation to print all the
# Maximal Increasing Sub-array of array
 
# Function to print each of maximal
# contiguous increasing subarray
def printmaxSubseq(arr, n) :
     
    # Loop to iterate through the array and print
    # the maximal contiguous increasing subarray.
    for i in range(n - 1) :
         
        # Condition to check whether the element at i, is
        # greater than its next neighbouring element or not.
        if (arr[i] < arr[i + 1]) :
            print(arr[i], end = " ");
        else :
            print(arr[i]);
             
    print(arr[n - 1]);
     
# Driver function
if __name__ == "__main__" :
 
    arr = [ 9, 8, 11, 13, 10, 15, 14, 16, 20, 5 ];
    n = len(arr);
    printmaxSubseq(arr, n);
 
# This code is contributed by AnkitRai01

C#




// C# Implementation to print all the
// Maximal Increasing Sub-array of array
using System;
 
class GFG
{
     
    // Function to print each of maximal
    // contiguous increasing subarray
    static void printmaxSubseq(int []arr, int n)
    {
        int i;
     
        // Loop to iterate through the array and print
        // the maximal contiguous increasing subarray.
        for (i = 0; i < n ; i++)
        {
            // Condition to check whether the element at i, is
            // greater than its next neighbouring element or not.
            if (i + 1 < n && arr[i] < arr[i + 1])
                Console.Write(arr[i] + " ");
            else
                Console.WriteLine(arr[i]);
        }
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 9, 8, 11, 13, 10, 15, 14, 16, 20, 5 };
        int n = arr.Length;
        printmaxSubseq(arr, n);
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
// Javascript Implementation to print all the
// Maximal Increasing Sub-array of array
 
// Function to print each of maximal
// contiguous increasing subarray
function printmaxSubseq(arr, n)
{
    let i;
 
    // Loop to iterate through the array and print
    // the maximal contiguous increasing subarray.
    for (i = 0; i < n; i++) {
        // Condition to check whether the element at i, is
        // greater than its next neighbouring element or not.
        if (arr[i] < arr[i + 1])
            document.write(arr[i] + " ");
        else
            document.write(arr[i] + "<br>");
    }
}
 
// Driver function
 
let arr = [ 9, 8, 11, 13, 10, 15, 14, 16, 20, 5 ];
let n = arr.length;
printmaxSubseq(arr, n);
</script>
Output: 
9
8 11 13
10 15
14 16 20
5

 

Time Complexity: O(n)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!