# Print all maximal increasing contiguous sub-array in an array

• Last Updated : 02 Jun, 2021

Given an array arr[], the task is to find all the maximal contiguous increasing subarray in a given array.

Examples

Input:
arr[] = { 80, 50, 60, 70, 40, 50, 80, 70 }
Output:
80
50 60 70
40 50 80
70

Input:
arr[] = { 10, 20, 23, 12, 5, 4, 61, 67, 87, 9 }
Output:
10 20 23
12

4 61 67 87
9

Approach: Iterate over the array and compare every element with its next neighboring element such that, if it is less than the next element, print it, else print it individually on the next line.
Below is the implementation of the above approach.

## C++

 `// C++ Implementation to print all the``// Maximal Increasing Sub-array of array``#include ``using` `namespace` `std;` `// Function to print each of maximal``// contiguous increasing subarray``void` `printmaxSubseq(``int` `arr[], ``int` `n)``{``    ``int` `i;` `    ``// Loop to iterate through the array and print``    ``// the maximal contiguous increasing subarray.``    ``for` `(i = 0; i < n; i++) {``        ``// Condition to check whether the element at i, is``        ``// greater than its next neighbouring element or not.``        ``if` `(arr[i] < arr[i + 1])``            ``cout << arr[i] << ``" "``;``        ``else``            ``cout << arr[i] << ``"\n"``;``    ``}``}` `// Driver function``int` `main()``{``    ``int` `arr[] = { 9, 8, 11, 13, 10, 15, 14, 16, 20, 5 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);``    ``printmaxSubseq(arr, n);``    ``return` `0;``}`

## Java

 `// Java Implementation to print all the``// Maximal Increasing Sub-array of array``import` `java.util.*;` `class` `GFG``{` `// Function to print each of maximal``// contiguous increasing subarray``static` `void` `printmaxSubseq(``int` `arr[], ``int` `n)``{``    ``int` `i;` `    ``// Loop to iterate through the array and print``    ``// the maximal contiguous increasing subarray.``    ``for` `(i = ``0``; i < n ; i++)``    ``{``        ``// Condition to check whether the element at i, is``        ``// greater than its next neighbouring element or not.``        ``if` `(i + ``1` `< n && arr[i] < arr[i + ``1``])``            ``System.out.print(arr[i] + ``" "``);``        ``else``            ``System.out.print(arr[i] + ``"\n"``);``    ``}``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``9``, ``8``, ``11``, ``13``, ``10``, ``15``, ``14``, ``16``, ``20``, ``5` `};``    ``int` `n = arr.length;``    ``printmaxSubseq(arr, n);``}``}` `// This code is contributed by 29AjayKumar`

## Python3

 `# Python3 Implementation to print all the``# Maximal Increasing Sub-array of array` `# Function to print each of maximal``# contiguous increasing subarray``def` `printmaxSubseq(arr, n) :``    ` `    ``# Loop to iterate through the array and print``    ``# the maximal contiguous increasing subarray.``    ``for` `i ``in` `range``(n ``-` `1``) :``        ` `        ``# Condition to check whether the element at i, is``        ``# greater than its next neighbouring element or not.``        ``if` `(arr[i] < arr[i ``+` `1``]) :``            ``print``(arr[i], end ``=` `" "``);``        ``else` `:``            ``print``(arr[i]);``            ` `    ``print``(arr[n ``-` `1``]);``    ` `# Driver function``if` `__name__ ``=``=` `"__main__"` `:` `    ``arr ``=` `[ ``9``, ``8``, ``11``, ``13``, ``10``, ``15``, ``14``, ``16``, ``20``, ``5` `];``    ``n ``=` `len``(arr);``    ``printmaxSubseq(arr, n);` `# This code is contributed by AnkitRai01`

## C#

 `// C# Implementation to print all the``// Maximal Increasing Sub-array of array``using` `System;` `class` `GFG``{``    ` `    ``// Function to print each of maximal``    ``// contiguous increasing subarray``    ``static` `void` `printmaxSubseq(``int` `[]arr, ``int` `n)``    ``{``        ``int` `i;``    ` `        ``// Loop to iterate through the array and print``        ``// the maximal contiguous increasing subarray.``        ``for` `(i = 0; i < n ; i++)``        ``{``            ``// Condition to check whether the element at i, is``            ``// greater than its next neighbouring element or not.``            ``if` `(i + 1 < n && arr[i] < arr[i + 1])``                ``Console.Write(arr[i] + ``" "``);``            ``else``                ``Console.WriteLine(arr[i]);``        ``}``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int` `[]arr = { 9, 8, 11, 13, 10, 15, 14, 16, 20, 5 };``        ``int` `n = arr.Length;``        ``printmaxSubseq(arr, n);``    ``}``}` `// This code is contributed by AnkitRai01`

## Javascript

 ``

Output:

```9
8 11 13
10 15
14 16 20
5```

Time Complexity: O(n)

My Personal Notes arrow_drop_up