Print all K-sum levels in a Binary Tree

Given a Binary Tree and an integer K where the tree has positive and negative nodes, the task is to print the elements of the level whose sum equals K. If no such result exists, then print “Not Possible“.

Examples:

Input: 
            -10
           /    \
          2      -3
        /   \       \
       4     15      -6
      /       \      /
     7         -8   9 
K = 13
Output: 4 15 -6
Explanation: 
Level 1 (-10): Sum = -10
Level 2 (2, 3): Sum = 5
Level 3 (4, 15, -6): Sum = 13
Level 4 (7, -8, 9): Sum = 8
Only level 3 (4, 15, -6) has sum = K

Input:
                  1
                /  \ 
              12    13 
             /     /   \ 
            11    6    -11 
                   \    / 
                   2   2  
K = 30
Output:  Not Possible
Explanation: 
There is no such level whose sum = K

Approach:

  • Perform level order traversal of the Binary tree and store find the sum of each level.
  • If the sum is equal to K, prin the level. Else move to the next level.
  • The process is repeated till all the levels has been traversed and checked.
  • If there is no such level with sum K, print “Not Possible”.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print all
// K-sum levels in a Binary Tree
#include <bits/stdc++.h>
using namespace std;
  
// Vector to store the
// elements of a level
vector<int> level;
  
// Binary Tree Node
struct node {
    struct node* left;
    int data;
    struct node* right;
};
  
// Function to display elements
void display(bool flag)
{
  
    // Check if boolean variable is true
    // then print the level
    if (flag) {
  
        for (auto x : level)
            cout << x << " ";
    }
  
    else
  
        cout << "Not Possible\n";
}
  
// Function to find sum of
// elements by level order traversal
void SumlevelOrder(node* root, int k)
{
  
    if (root == NULL)
        return;
  
    // Queue data structure for
    // level order tarversal
    queue<node*> q;
  
    // Enqueue Root in Queue
    q.push(root);
  
    bool flag = false;
  
    while (q.empty() == false) {
  
        // number of nodes at current level
        int nodeCount = q.size();
  
        int Present_level_sum = 0;
  
        // Dequeue all nodes of current level and
        // Enqueue all nodes of next level
        while (nodeCount > 0) {
  
            node* node = q.front();
  
            // To add node data
            Present_level_sum += node->data;
  
            level.push_back(node->data);
  
            q.pop();
  
            if (node->left != NULL)
                q.push(node->left);
  
            if (node->right != NULL)
                q.push(node->right);
  
            nodeCount--;
        }
  
        if (Present_level_sum == k) {
  
            flag = true;
            break;
        }
  
        level.clear();
    }
  
    display(flag);
}
  
// Function to create a new tree node
node* newNode(int data)
{
    node* temp = new node;
    temp->data = data;
    temp->left = NULL;
    temp->right = NULL;
    return temp;
}
  
// Driver code
int main()
{
    // Create binary tree
    node* root = newNode(1);
  
    root->left = newNode(2);
    root->right = newNode(3);
  
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->right = newNode(6);
  
    int K = 15;
  
    SumlevelOrder(root, K);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print all
// K-sum levels in a Binary Tree
import java.util.*;
  
class GFG{
   
// Vector to store the
// elements of a level
static Vector<Integer> level = new Vector<Integer>();
   
// Binary Tree Node
static class node {
    node left;
    int data;
    node right;
};
   
// Function to display elements
static void display(boolean flag)
{
   
    // Check if boolean variable is true
    // then print the level
    if (flag) {
   
        for (Integer x : level)
            System.out.print(x+ " ");
    }
   
    else
   
        System.out.print("Not Possible\n");
}
   
// Function to find sum of
// elements by level order traversal
static void SumlevelOrder(node root, int k)
{
   
    if (root == null)
        return;
   
    // Queue data structure for
    // level order tarversal
    Queue<node> q = new LinkedList<>();
   
    // Enqueue Root in Queue
    q.add(root);
   
    boolean flag = false;
   
    while (q.isEmpty() == false) {
   
        // number of nodes at current level
        int nodeCount = q.size();
   
        int Present_level_sum = 0;
   
        // Dequeue all nodes of current level and
        // Enqueue all nodes of next level
        while (nodeCount > 0) {
   
            node node = q.peek();
   
            // To add node data
            Present_level_sum += node.data;
   
            level.add(node.data);
   
            q.remove();
   
            if (node.left != null)
                q.add(node.left);
   
            if (node.right != null)
                q.add(node.right);
   
            nodeCount--;
        }
   
        if (Present_level_sum == k) {
   
            flag = true;
            break;
        }
   
        level.clear();
    }
   
    display(flag);
}
   
// Function to create a new tree node
static node newNode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = null;
    temp.right = null;
    return temp;
}
   
// Driver code
public static void main(String[] args)
{
    // Create binary tree
    node root = newNode(1);
   
    root.left = newNode(2);
    root.right = newNode(3);
   
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.right = newNode(6);
   
    int K = 15;
   
    SumlevelOrder(root, K);
   
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print all
// K-sum levels in a Binary Tree
using System;
using System.Collections.Generic;
  
class GFG{
    
// List to store the
// elements of a level
static List<int> level = new List<int>();
    
// Binary Tree Node
class node {
    public node left;
    public int data;
    public node right;
};
    
// Function to display elements
static void display(bool flag)
{
    
    // Check if bool variable is true
    // then print the level
    if (flag) {
    
        foreach (int x in level)
            Console.Write(x+ " ");
    }
    
    else
    
        Console.Write("Not Possible\n");
}
    
// Function to find sum of
// elements by level order traversal
static void SumlevelOrder(node root, int k)
{
    
    if (root == null)
        return;
    
    // Queue data structure for
    // level order tarversal
    Queue<node> q = new Queue<node>();
    
    // Enqueue Root in Queue
    q.Enqueue(root);
    
    bool flag = false;
    
    while (q.Count!=0) {
    
        // number of nodes at current level
        int nodeCount = q.Count;
    
        int Present_level_sum = 0;
    
        // Dequeue all nodes of current level and
        // Enqueue all nodes of next level
        while (nodeCount > 0) {
    
            node node = q.Peek();
    
            // To add node data
            Present_level_sum += node.data;
    
            level.Add(node.data);
    
            q.Dequeue();
    
            if (node.left != null)
                q.Enqueue(node.left);
    
            if (node.right != null)
                q.Enqueue(node.right);
    
            nodeCount--;
        }
    
        if (Present_level_sum == k) {
    
            flag = true;
            break;
        }
    
        level.Clear();
    }
    
    display(flag);
}
    
// Function to create a new tree node
static node newNode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = null;
    temp.right = null;
    return temp;
}
    
// Driver code
public static void Main(String[] args)
{
    // Create binary tree
    node root = newNode(1);
    
    root.left = newNode(2);
    root.right = newNode(3);
    
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.right = newNode(6);
    
    int K = 15;
    
    SumlevelOrder(root, K);
    
}
}
   
// This code is contributed by sapnasingh4991

chevron_right


Output:

4 5 6

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.