Print a given matrix in spiral form

Given a 2D array, print it in spiral form. See the following examples.

Examples: 

Input:  1    2   3   4
        5    6   7   8
        9   10  11  12
        13  14  15  16
Output: 1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10 
Explanation: The output is matrix in spiral format. 

Input:  1   2   3   4  5   6
        7   8   9  10  11  12
        13  14  15 16  17  18
Output: 1 2 3 4 5 6 12 18 17 16 15 14 13 7 8 9 10 11
Explanation :The output is matrix in spiral format.

Method 1: This is a simple method to solve the following problem. 

Approach: The problem can be solved by dividing the matrix into loops or squares or boundaries. It can be seen that the elements of the outer loop are printed first in a clockwise manner then the elements of the inner loop is printed. So printing the elements of a loop can be solved using four loops which prints all the elements. Every ‘for’ loop defines a single direction movement along with the matrix. The first for loop represents the movement from left to right, whereas the second crawl represents the movement from top to bottom, the third represents the movement from the right to left, and the fourth represents the movement from bottom to up.



Below is the implementation of the above algorithm: 
 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to print a matrix spirally
 
#include <bits/stdc++.h>
using namespace std;
#define R 3
#define C 6
 
void spiralPrint(int m, int n, int a[R][C])
{
    int i, k = 0, l = 0;
 
    /* k - starting row index
        m - ending row index
        l - starting column index
        n - ending column index
        i - iterator
    */
 
    while (k < m && l < n) {
        /* Print the first row from
               the remaining rows */
        for (i = l; i < n; ++i) {
            cout << a[k][i] << " ";
        }
        k++;
 
        /* Print the last column
         from the remaining columns */
        for (i = k; i < m; ++i) {
            cout << a[i][n - 1] << " ";
        }
        n--;
 
        /* Print the last row from
                the remaining rows */
        if (k < m) {
            for (i = n - 1; i >= l; --i) {
                cout << a[m - 1][i] << " ";
            }
            m--;
        }
 
        /* Print the first column from
                   the remaining columns */
        if (l < n) {
            for (i = m - 1; i >= k; --i) {
                cout << a[i][l] << " ";
            }
            l++;
        }
    }
}
 
/* Driver Code */
int main()
{
    int a[R][C] = { { 1, 2, 3, 4, 5, 6 },
                    { 7, 8, 9, 10, 11, 12 },
                    { 13, 14, 15, 16, 17, 18 } };
     
      // Function Call
    spiralPrint(R, C, a);
    return 0;
}
 
// This is code is contributed by rathbhupendra
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to print the array in a
// spiral form
 
#include <stdio.h>
#define R 3
#define C 6
 
void spiralPrint(int m, int n, int a[R][C])
{
    int i, k = 0, l = 0;
 
    /*  k - starting row index
        m - ending row index
        l - starting column index
        n - ending column index
        i - iterator
    */
 
    while (k < m && l < n) {
        /* Print the first row from the remaining rows */
        for (i = l; i < n; ++i) {
            printf("%d ", a[k][i]);
        }
        k++;
 
        /* Print the last column from the remaining columns
         */
        for (i = k; i < m; ++i) {
            printf("%d ", a[i][n - 1]);
        }
        n--;
 
        /* Print the last row from the remaining rows */
        if (k < m) {
            for (i = n - 1; i >= l; --i) {
                printf("%d ", a[m - 1][i]);
            }
            m--;
        }
 
        /* Print the first column from the remaining columns
         */
        if (l < n) {
            for (i = m - 1; i >= k; --i) {
                printf("%d ", a[i][l]);
            }
            l++;
        }
    }
}
 
/* Driver Code */
int main()
{
    int a[R][C] = { { 1, 2, 3, 4, 5, 6 },
                    { 7, 8, 9, 10, 11, 12 },
                    { 13, 14, 15, 16, 17, 18 } };
     
    // Function Call
    spiralPrint(R, C, a);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print a given matrix in spiral form
import java.io.*;
 
class GFG {
 
    // Function print matrix in spiral form
    static void spiralPrint(int m, int n, int a[][])
    {
        int i, k = 0, l = 0;
 
        /*  k - starting row index
        m - ending row index
        l - starting column index
        n - ending column index
        i - iterator
        */
 
        while (k < m && l < n) {
            // Print the first row from the remaining rows
            for (i = l; i < n; ++i) {
                System.out.print(a[k][i] + " ");
            }
            k++;
 
            // Print the last column from the remaining
            // columns
            for (i = k; i < m; ++i) {
                System.out.print(a[i][n - 1] + " ");
            }
            n--;
 
            // Print the last row from the remaining rows */
            if (k < m) {
                for (i = n - 1; i >= l; --i) {
                    System.out.print(a[m - 1][i] + " ");
                }
                m--;
            }
 
            // Print the first column from the remaining
            // columns */
            if (l < n) {
                for (i = m - 1; i >= k; --i) {
                    System.out.print(a[i][l] + " ");
                }
                l++;
            }
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int R = 3;
        int C = 6;
        int a[][] = { { 1, 2, 3, 4, 5, 6 },
                      { 7, 8, 9, 10, 11, 12 },
                      { 13, 14, 15, 16, 17, 18 } };
        
        // Function Call
          spiralPrint(R, C, a);
    }
}
 
// Contributed by Pramod Kumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to print
# given matrix in spiral form
 
 
def spiralPrint(m, n, a):
    k = 0
    l = 0
 
    ''' k - starting row index
        m - ending row index
        l - starting column index
        n - ending column index
        i - iterator '''
 
    while (k < m and l < n):
 
        # Print the first row from
        # the remaining rows
        for i in range(l, n):
            print(a[k][i], end=" ")
 
        k += 1
 
        # Print the last column from
        # the remaining columns
        for i in range(k, m):
            print(a[i][n - 1], end=" ")
 
        n -= 1
 
        # Print the last row from
        # the remaining rows
        if (k < m):
 
            for i in range(n - 1, (l - 1), -1):
                print(a[m - 1][i], end=" ")
 
            m -= 1
 
        # Print the first column from
        # the remaining columns
        if (l < n):
            for i in range(m - 1, k - 1, -1):
                print(a[i][l], end=" ")
 
            l += 1
 
 
# Driver Code
a = [[1, 2, 3, 4, 5, 6],
     [7, 8, 9, 10, 11, 12],
     [13, 14, 15, 16, 17, 18]]
 
R = 3
C = 6
 
# Function Call
spiralPrint(R, C, a)
 
# This code is contributed by Nikita Tiwari.
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print a given
// matrix in spiral form
using System;
 
class GFG {
    // Function print matrix in spiral form
    static void spiralPrint(int m, int n, int[, ] a)
    {
        int i, k = 0, l = 0;
        /* k - starting row index
        m - ending row index
        l - starting column index
        n - ending column index
        i - iterator
        */
 
        while (k < m && l < n) {
            // Print the first row
            // from the remaining rows
            for (i = l; i < n; ++i) {
                Console.Write(a[k, i] + " ");
            }
            k++;
 
            // Print the last column from the
            // remaining columns
            for (i = k; i < m; ++i) {
                Console.Write(a[i, n - 1] + " ");
            }
            n--;
 
            // Print the last row from
            // the remaining rows
            if (k < m) {
                for (i = n - 1; i >= l; --i) {
                    Console.Write(a[m - 1, i] + " ");
                }
                m--;
            }
 
            // Print the first column from
            // the remaining columns
            if (l < n) {
                for (i = m - 1; i >= k; --i) {
                    Console.Write(a[i, l] + " ");
                }
                l++;
            }
        }
    }
 
    // Driver Code
    public static void Main()
    {
        int R = 3;
        int C = 6;
        int[, ] a = { { 1, 2, 3, 4, 5, 6 },
                      { 7, 8, 9, 10, 11, 12 },
                      { 13, 14, 15, 16, 17, 18 } };
         
          // Function Call
          spiralPrint(R, C, a);
    }
}
 
// This code is contributed by Sam007
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to print a given
// matrix in spiral form
$R = 3;
$C = 6;
 
function spiralPrint($m, $n, &$a)
{
    $k = 0;
    $l = 0;
 
    /* $k - starting row index
        $m - ending row index
        $l - starting column index
        $n - ending column index
        $i - iterator
    */
 
    while ($k < $m && $l < $n)
    {
        /* Print the first row from
           the remaining rows */
        for ($i = $l; $i < $n; ++$i)
        {
            echo $a[$k][$i] . " ";
        }
        $k++;
 
        /* Print the last column
        from the remaining columns */
        for ($i = $k; $i < $m; ++$i)
        {
            echo $a[$i][$n - 1] . " ";
        }
        $n--;
 
        /* Print the last row from
           the remaining rows */
        if ($k < $m)
        {
            for ($i = $n - 1; $i >= $l; --$i)
            {
                echo $a[$m - 1][$i] . " ";
            }
            $m--;
        }
 
        /* Print the first column from
           the remaining columns */
        if ($l < $n)
        {
            for ($i = $m - 1; $i >= $k; --$i)
            {
                echo $a[$i][$l] . " ";
            }
            $l++;
        }    
    }
}
 
// Driver code
$a = array(array(1, 2, 3, 4, 5, 6),
           array(7, 8, 9, 10, 11, 12),
           array(13, 14, 15, 16, 17, 18));
 
// Function Call
spiralPrint($R, $C, $a);
 
// This code is contributed
// by ChitraNayal
?>
chevron_right

Output
1 2 3 4 5 6 12 18 17 16 15 14 13 7 8 9 10 11 

Complexity Analysis: 

Method 2: (Recursive Approach)

Approach: The above problem can be solved by printing the boundary of the Matrix recursively. In each recursive call, we decrease the dimensions of the matrix. The idea of printing the boundary or loops is the same.

Below is the implementation of the above algorithm: 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++. program for the above approach
#include <iostream>
using namespace std;
 
#define R 4
#define C 4
 
// Function for printing matrix in spiral
// form i, j: Start index of matrix, row
// and column respectively m, n: End index
// of matrix row and column respectively
void print(int arr[R][C], int i, int j, int m, int n)
{
    // If i or j lies outside the matrix
    if (i >= m or j >= n)
        return;
 
    // Print First Row
    for (int p = i; p < n; p++)
        cout << arr[i][p] << " ";
 
    // Print Last Column
    for (int p = i + 1; p < m; p++)
        cout << arr[p][n - 1] << " ";
 
    // Print Last Row, if Last and
    // First Row are not same
    if ((m - 1) != i)
        for (int p = n - 2; p >= j; p--)
            cout << arr[m - 1][p] << " ";
 
    // Print First Column,  if Last and
    // First Column are not same
    if ((n - 1) != j)
        for (int p = m - 2; p > i; p--)
            cout << arr[p][j] << " ";
 
    print(arr, i + 1, j + 1, m - 1, n - 1);
}
 
// Driver Code
int main()
{
 
    int a[R][C] = { { 1, 2, 3, 4 },
                    { 5, 6, 7, 8 },
                    { 9, 10, 11, 12 },
                    { 13, 14, 15, 16 } };
 
    // Function Call
    print(a, 0, 0, R, C);
    return 0;
}
// This Code is contributed by Ankur Goel
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
 
class GFG {
    static int R = 4;
    static int C = 4;
 
    // Function for printing matrix in spiral
    // form i, j: Start index of matrix, row
    // and column respectively m, n: End index
    // of matrix row and column respectively
    static void print(int arr[][], int i, int j, int m,
                      int n)
    {
        // If i or j lies outside the matrix
        if (i >= m || j >= n) {
            return;
        }
 
        // Print First Row
        for (int p = i; p < n; p++) {
            System.out.print(arr[i][p] + " ");
        }
 
        // Print Last Column
        for (int p = i + 1; p < m; p++) {
            System.out.print(arr[p][n - 1] + " ");
        }
 
        // Print Last Row, if Last and
        // First Row are not same
        if ((m - 1) != i) {
            for (int p = n - 2; p >= j; p--) {
                System.out.print(arr[m - 1][p] + " ");
            }
        }
 
        // Print First Column, if Last and
        // First Column are not same
        if ((n - 1) != j) {
            for (int p = m - 2; p > i; p--) {
                System.out.print(arr[p][j] + " ");
            }
        }
        print(arr, i + 1, j + 1, m - 1, n - 1);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int a[][] = { { 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 } };
 
        // Function Call
        print(a, 0, 0, R, C);
    }
}
 
// This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function for printing matrix in spiral
# form i, j: Start index of matrix, row
# and column respectively m, n: End index
# of matrix row and column respectively
 
 
def printdata(arr, i, j, m, n):
 
    # If i or j lies outside the matrix
    if (i >= m or j >= n):
        return
 
    # Print First Row
    for p in range(i, n):
        print(arr[i][p], end=" ")
 
    # Print Last Column
    for p in range(i + 1, m):
        print(arr[p][n - 1], end=" ")
 
    # Print Last Row, if Last and
    # First Row are not same
    if ((m - 1) != i):
        for p in range(n - 2, j - 1, -1):
            print(arr[m - 1][p], end=" ")
 
    # Print First Column, if Last and
    # First Column are not same
    if ((n - 1) != j):
        for p in range(m - 2, i, -1):
            print(arr[p][j], end=" ")
 
    printdata(arr, i + 1, j + 1, m - 1, n - 1)
 
 
# Driver code
R = 4
C = 4
arr = [[1, 2, 3, 4],
       [5, 6, 7, 8],
       [9, 10, 11, 12],
       [13, 14, 15, 16]]
 
# Function Call
printdata(arr, 0, 0, R, C)
 
# This code is contributed by avsadityavardhan
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
 
class GFG {
    static int R = 4;
    static int C = 4;
 
    // Function for printing matrix in spiral
    // form i, j: Start index of matrix, row
    // and column respectively m, n: End index
    // of matrix row and column respectively
    static void print(int[, ] arr, int i, int j, int m,
                      int n)
    {
        // If i or j lies outside the matrix
        if (i >= m || j >= n) {
            return;
        }
 
        // Print First Row
        for (int p = i; p < n; p++) {
            Console.Write(arr[i, p] + " ");
        }
 
        // Print Last Column
        for (int p = i + 1; p < m; p++) {
            Console.Write(arr[p, n - 1] + " ");
        }
 
        // Print Last Row, if Last and
        // First Row are not same
        if ((m - 1) != i) {
            for (int p = n - 2; p >= j; p--) {
                Console.Write(arr[m - 1, p] + " ");
            }
        }
 
        // Print First Column, if Last and
        // First Column are not same
        if ((n - 1) != j) {
            for (int p = m - 2; p > i; p--) {
                Console.Write(arr[p, j] + " ");
            }
        }
        print(arr, i + 1, j + 1, m - 1, n - 1);
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int[, ] a = { { 1, 2, 3, 4 },
                      { 5, 6, 7, 8 },
                      { 9, 10, 11, 12 },
                      { 13, 14, 15, 16 } };
        // Function Call
        print(a, 0, 0, R, C);
    }
}
 
// This code is contributed by Princi Singh
chevron_right

Output: 
1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10


 

Complexity Analysis: 

https://www.youtube.com/watch?v=qEZoUVOqOs8
 

Please write comments if you find the above code incorrect, or find other ways to solve the same problem.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Article Tags :