Prime numbers after prime P with sum S

Given three numbers sum S, prime P and N, find all N prime numbers after prime P such that their sum is equal to S.

Examples :

Input :  N = 2, P = 7, S = 28 
Output : 11 17
Explanation : 11 and 17 are primes after
prime 7 and (11 + 17 = 28) 

Input :  N = 3, P = 2, S = 23 
Output : 3 7 13
         5 7 11
Explanation : 3, 5, 7, 11 and 13 are primes 
after prime 2. And (3 + 7 + 13 = 5 + 7 + 11 
= 23) 

Input :  N = 4, P = 3, S = 54
Output : 5 7 11 31 
         5 7 13 29 
         5 7 19 23 
         5 13 17 19 
         7 11 13 23 
         7 11 17 19 
Explanation : All are prime numbers and 
their sum is 54



Approach : The approach used is to produce all the primes less than S and greater than P. And then backtracking to find if such N primes exist whose sum equals S.

For example, S = 10, N = 2, P = 2

C++

// CPP Program to print all N primes after
// prime P whose sum equals S
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;

// vector to store prime and N primes
// whose sum equals given S
vector<int> set;
vector<int> prime;

// function to check prime number
bool isPrime(int x)
{
    // square root of x
    int sqroot = sqrt(x);
    bool flag = true;

    // since 1 is not prime number
    if (x == 1)
        return false;

    // if any factor is found return false
    for (int i = 2; i <= sqroot; i++)
        if (x % i == 0)
            return false;

    // no factor found
    return true;
}

// function to display N primes whose sum equals S
void display()
{
    int length = set.size();
    for (int i = 0; i < length; i++)
        cout << set[i] << " ";
    cout << "\n";
}

// function to evaluate all possible N primes
// whose sum equals S
void primeSum(int total, int N, int S, int index)
{
    // if total equals S And
    // total is reached using N primes
    if (total == S && set.size() == N)
    {
        // display the N primes
        display();
        return;
    }

    // if total is greater than S
    // or if index has reached last element
    if (total > S || index == prime.size())
        return;

    // add prime[index] to set vector
    set.push_back(prime[index]);

    // include the (index)th prime to total
    primeSum(total+prime[index], N, S, index+1);

    // remove element from set vector
    set.pop_back();

    // exclude (index)th prime
    primeSum(total, N, S, index+1);
}

// function to generate all primes
void allPrime(int N, int S, int P)
{
    // all primes less than S itself
    for (int i = P+1; i <=S ; i++)
    {
        // if i is prime add it to prime vector
        if (isPrime(i))
            prime.push_back(i);
    }

    // if primes are less than N
    if (prime.size() < N)
        return;
    primeSum(0, N, S, 0);
}

// Driver Code
int main()
{
    int S = 54, N = 2, P = 3;
    allPrime(N, S, P);
    return 0;
}

Java

// Java Program to print 
// all N primes after prime 
// P whose sum equals S
import java.io.*;
import java.util.*;

class GFG
{
    // vector to store prime 
    // and N primes whose sum
    // equals given S
    static ArrayList<Integer> set = 
                     new ArrayList<Integer>();
    static ArrayList<Integer> prime = 
                     new ArrayList<Integer>();
    
    // function to check
    // prime number
    static boolean isPrime(int x)
    {
        // square root of x
        int sqroot = (int)Math.sqrt(x);

        // since 1 is not
        // prime number
        if (x == 1)
            return false;
    
        // if any factor is
        // found return false
        for (int i = 2; 
                 i <= sqroot; i++)
            if (x % i == 0)
                return false;
    
        // no factor found
        return true;
    }
    
    // function to display N 
    // primes whose sum equals S
    static void display()
    {
        int length = set.size();
        for (int i = 0; 
                 i < length; i++)
            System.out.print(
                   set.get(i) + " ");
        System.out.println();
    }
    
    // function to evaluate 
    // all possible N primes
    // whose sum equals S
    static void primeSum(int total, int N, 
                         int S, int index)
    {
        // if total equals S
        // And total is reached
        // using N primes
        if (total == S && 
            set.size() == N)
        {
            // display the N primes
            display();
            return;
        }
    
        // if total is greater 
        // than S or if index 
        // has reached last
        // element
        if (total > S ||
            index == prime.size())
            return;
    
        // add prime.get(index) 
        // to set vector
        set.add(prime.get(index));
    
        // include the (index)th 
        // prime to total
        primeSum(total + prime.get(index),
                         N, S, index + 1);
    
        // remove element 
        // from set vector
        set.remove(set.size() - 1);
    
        // exclude (index)th prime
        primeSum(total, N, 
                 S, index + 1);
    }
    
    // function to generate
    // all primes
    static void allPrime(int N, 
                         int S, int P)
    {
        // all primes less 
        // than S itself
        for (int i = P + 1; 
                 i <= S ; i++)
        {
            // if i is prime add
            // it to prime vector
            if (isPrime(i))
                prime.add(i);
        }
    
        // if primes are 
        // less than N
        if (prime.size() < N)
            return;
        primeSum(0, N, S, 0);
    }
    
    // Driver Code
    public static void main(String args[])
    {
        int S = 54, N = 2, P = 3;
        allPrime(N, S, P);
    }
}

// This code is contributed by 
// Manish Shaw(manishshaw1)

Python3

# Python Program to print
# all N primes after prime 
# P whose sum equals S
import math

# vector to store prime 
# and N primes whose 
# sum equals given S
set = []
prime = []

# function to 
# check prime number
def isPrime(x) :

    # square root of x
    sqroot = int(math.sqrt(x))
    flag = True

    # since 1 is not
    # prime number
    if (x == 1) :
        return False

    # if any factor is
    # found return false
    for i in range(2, sqroot + 1) :
        if (x % i == 0) :
            return False

    # no factor found
    return True

# function to display N 
# primes whose sum equals S
def display() :

    global set, prime
    length = len(set)
    for i in range(0, length) :
        print (set[i], end = " ")
    print ()

# function to evaluate 
# all possible N primes
# whose sum equals S
def primeSum(total, N, 
             S, index) :
    
    global set, prime
    
    # if total equals S 
    # And total is reached 
    # using N primes
    if (total == S and 
         len(set) == N) :
    
        # display the N primes
        display()
        return

    # if total is greater 
    # than S or if index 
    # has reached last element
    if (total > S or 
        index == len(prime)) :
        return

    # add prime[index]
    # to set vector
    set.append(prime[index])

    # include the (index)th
    # prime to total
    primeSum(total + prime[index], 
                  N, S, index + 1)

    # remove element
    # from set vector
    set.pop()

    # exclude (index)th prime
    primeSum(total, N, 
             S, index + 1)

# function to generate
# all primes
def allPrime(N, S, P) :

    global set, prime
    
    # all primes less 
    # than S itself
    for i in range(P + 1, 
                   S + 1) :
    
        # if i is prime add
        # it to prime vector
        if (isPrime(i)) :
            prime.append(i)
    
    # if primes are
    # less than N
    if (len(prime) < N) :
        return
    primeSum(0, N, S, 0)

# Driver Code
S = 54
N = 2
P = 3
allPrime(N, S, P)

# This code is contributed by
# Manish Shaw(manishshaw1)

C#

// C# Program to print all 
// N primes after prime P 
// whose sum equals S
using System;
using System.Collections.Generic;

class GFG
{
    // vector to store prime 
    // and N primes whose sum
    // equals given S
    static List<int> set = new List<int>();
    static List<int> prime = new List<int>();
    
    // function to check prime number
    static bool isPrime(int x)
    {
        // square root of x
        int sqroot = (int)Math.Sqrt(x);

        // since 1 is not prime number
        if (x == 1)
            return false;
    
        // if any factor is
        // found return false
        for (int i = 2; i <= sqroot; i++)
            if (x % i == 0)
                return false;
    
        // no factor found
        return true;
    }
    
    // function to display N 
    // primes whose sum equals S
    static void display()
    {
        int length = set.Count;
        for (int i = 0; i < length; i++)
            Console.Write(set[i] + " ");
        Console.WriteLine();
    }
    
    // function to evaluate 
    // all possible N primes
    // whose sum equals S
    static void primeSum(int total, int N, 
                         int S, int index)
    {
        // if total equals S And
        // total is reached using N primes
        if (total == S && set.Count == N)
        {
            // display the N primes
            display();
            return;
        }
    
        // if total is greater than 
        // S or if index has reached
        // last element
        if (total > S || index == prime.Count)
            return;
    
        // add prime[index] 
        // to set vector
        set.Add(prime[index]);
    
        // include the (index)th 
        // prime to total
        primeSum(total + prime[index],
                         N, S, index + 1);
    
        // remove element 
        // from set vector
        set.RemoveAt(set.Count - 1);
    
        // exclude (index)th prime
        primeSum(total, N, S, index + 1);
    }
    
    // function to generate
    // all primes
    static void allPrime(int N, 
                         int S, int P)
    {
        // all primes less than S itself
        for (int i = P + 1; i <=S ; i++)
        {
            // if i is prime add
            // it to prime vector
            if (isPrime(i))
                prime.Add(i);
        }
    
        // if primes are 
        // less than N
        if (prime.Count < N)
            return;
        primeSum(0, N, S, 0);
    }
    
    // Driver Code
    static void Main()
    {
        int S = 54, N = 2, P = 3;
        allPrime(N, S, P);
    }
}

// This code is contributed by 
// Manish Shaw(manishshaw1)

PHP

<?php
// PHP Program to print all 
// N primes after prime P
// whose sum equals S

// vector to store prime 
// and N primes whose 
// sum equals given S
$set = array();
$prime = array();

// function to 
// check prime number
function isPrime($x)
{
    // square root of x
    $sqroot = sqrt($x);
    $flag = true;

    // since 1 is not
    // prime number
    if ($x == 1)
        return false;

    // if any factor is
    // found return false
    for ($i = 2; $i <= $sqroot; $i++)
        if ($x % $i == 0)
            return false;

    // no factor found
    return true;
}

// function to display N 
// primes whose sum equals S
function display()
{
    global $set, $prime;
    $length = count($set);
    for ($i = 0; $i < $length; $i++)
        echo ($set[$i] . " ");
    echo ("\n");
}

// function to evaluate 
// all possible N primes
// whose sum equals S
function primeSum($total, $N,
                  $S, $index)
{
    global $set, $prime;
    
    // if total equals S 
    // And total is reached 
    // using N primes
    if ($total == $S && 
        count($set) == $N)
    {
        // display the N primes
        display();
        return;
    }

    // if total is greater 
    // than S or if index 
    // has reached last element
    if ($total > $S ||
        $index == count($prime))
        return;

    // add prime[index]
    // to set vector
    array_push($set, 
               $prime[$index]);

    // include the (index)th
    // prime to total
    primeSum($total + $prime[$index], 
             $N, $S, $index + 1);

    // remove element
    // from set vector
    array_pop($set);

    // exclude (index)th prime
    primeSum($total, $N, $S, 
             $index + 1);
}

// function to generate
// all primes
function allPrime($N, $S, $P)
{
    global $set, $prime;
    
    // all primes less 
    // than S itself
    for ($i = $P + 1; 
         $i <= $S ; $i++)
    {
        // if i is prime add
        // it to prime vector
        if (isPrime($i))
            array_push($prime, $i);
    }

    // if primes are
    // less than N
    if (count($prime) < $N)
        return;
    primeSum(0, $N, $S, 0);
} 

// Driver Code
$S = 54; $N = 2; $P = 3;
allPrime($N, $S, $P);

// This code is contributed by
// Manish Shaw(manishshaw1)
?>

Output:

7 47 
11 43 
13 41 
17 37 
23 31

Optimizations :
The above solution can be optimized by pre-computing all required primes using Sieve of Eratosthenes



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.


Improved By : manishshaw1




Recommended Posts:



2.5 Average Difficulty : 2.5/5.0
Based on 4 vote(s)






User Actions