# Primality Test | Set 5(Using Lucas-Lehmer Series)

In this article we will discuss about Lucas-Lehmer series which is used to check primality of prime numbers of the form 2p – 1 where p is an integer.

First let’s see what is Lucas-Lehmer series.

The Lucas-Lehmer series can be expressed as : Hence the series is:
Term 0: 4,
Term 1: 4*4 – 2 = 14,
Term 2: 14*14 – 2 = 194,
Term 3: 194*194 – 2 = 37634,
Term 4: 37634*37634 – 2 = 1416317954, … and so on.

Below is the program to find out first n terms of the Lucas-Lehmer series.

## C++

 // C++ program to find out Lucas-Lehmer series.  #include  #include  using namespace std;     // Function to find out first n terms  // (considering 4 as 0th term) of  // Lucas-Lehmer series.  void LucasLehmer(int n) {       // the 0th term of the series is 4.    unsigned long long current_val = 4;       // create an array to store the terms.    vector series;       // compute each term and add it to the array.    series.push_back(current_val);    for (int i = 0; i < n; i++) {      current_val = current_val * current_val - 2;      series.push_back(current_val);    }       // print out the terms one by one.    for (int i = 0; i <= n; i++)       cout << "Term " << i << ": "         << series[i] << endl;    }     // Driver program  int main() {    int n = 5;    LucasLehmer(n);    return 0;  }

## Java

 // Java program to find out  // Lucas-Lehmer series.  import java.util.*;     class GFG   {         // Function to find out       // first n terms(considering       // 4 as 0th term) of Lucas-      // Lehmer series.      static void LucasLehmer(int n)       {             // the 0th term of          // the series is 4.          long current_val = 4;             // create an array          // to store the terms.          ArrayList series = new ArrayList<>();              // compute each term           // and add it to the array.          series.add(current_val);          for (int i = 0; i < n; i++)           {              current_val = current_val                      * current_val - 2;              series.add(current_val);          }             // print out the         // terms one by one.          for (int i = 0; i <= n; i++)           {              System.out.println("Term " + i                      + ": " + series.get(i));          }      }         // Driver Code      public static void main(String[] args)       {             int n = 5;          LucasLehmer(n);      }  }     // This code has been contributed by 29AjayKumar

## C#

 // C# program to find out  // Lucas-Lehmer series.  using System;  using System.Collections.Generic;     class GFG  {         // Function to find out   // first n terms(considering   // 4 as 0th term) of Lucas-  // Lehmer series.  static void LucasLehmer(int n)   {     // the 0th term of  // the series is 4.  long current_val = 4;     // create an array  // to store the terms.  List<long> series = new List<long>();     // compute each term   // and add it to the array.  series.Add(current_val);  for (int i = 0; i < n; i++)  {      current_val = current_val *                     current_val - 2;      series.Add(current_val);  }     // print out the  // terms one by one.  for (int i = 0; i <= n; i++)       Console.WriteLine("Term " + i +                         ": " + series[i]);   }     // Driver Code  static void Main()  {      int n = 5;      LucasLehmer(n);  }  }     // This code is contributed by   // ManishShaw(manishshaw1)

Output:

Term 0: 4
Term 1: 14
Term 2: 194
Term 3: 37634
Term 4: 1416317954
Term 5: 2005956546822746114


We can use string to store the big numbers of the series.

Now what is the relation with prime numbers of this Lucas-Lehmer series?

1. First thing is that we can only check the primality of those numbers which we can represent as, x = (2p – 1) where p is an integer.
2. Now we have to find out the (p-1)th term of Lucas-Lehmer series.
3. If this term is a multiple of x, then x is a prime number.
4. When x is large, i.e. p is large then we may find difficulties to find out the (p-1)th term of the series.

Rather what we can do:
1. Start calculating Lucas-Lehmer series from 0th term and rather storing the whole term only store the s[i]%x (i.e. term modulo x).
2. Compute the next number of this modified series using the previous term. s[i] = (s[i-1]2 – 2)%x.
3. Compute up to (p-1)th term.
4. If the (p-1)th term is 0 then x is prime, otherwise not. Hence, s[p-1] has to be 0 to be x = (2p – 1) prime.

Examples:

Is 2^7 - 1 = 127 is a prime?
so here x = 127, p = 7-1 = 6.
Hence the modified Lucas-Lehmer series is:
term 1: 4,
term 2: (4*4 - 2) % 127 = 14,
term 3: (14*14 - 2) % 127 = 67,
term 4: (67*67 - 2) % 127 = 42,
term 5: (42*42 - 2) % 127 = 111,
term 6: (111*111) % 127 = 0.
Here the 6th term is 0 so 127 is a prime number.


Code to check whether 2^p-1 is prime or not

## C++

 // CPP program to check for primality using  // Lucas-Lehmer series.  #include  #include  using namespace std;     // Function to check whether (2^p - 1)  // is prime or not.  bool isPrime(int p) {       // generate the number    long long checkNumber = pow(2, p) - 1;       // First number of the series    long long nextval = 4 % checkNumber;       // Generate the rest (p-2) terms    // of the series.    for (int i = 1; i < p - 1; i++)       nextval = (nextval * nextval - 2) % checkNumber;         // now if the (p-1)th term is    // 0 return true else false.    return (nextval == 0);  }     // Driver Program  int main() {    // Check whether 2^p-1 is prime or not.    int p = 7;       long long checkNumber = pow(2, p) - 1;       if (isPrime(p))      cout << checkNumber << " is Prime.";    else     cout << checkNumber << " is not Prime.";       return 0;  }

## Java

 // Java program to check for primality using  // Lucas-Lehmer series.     class GFG{  // Function to check whether (2^p - 1)  // is prime or not.  static boolean isPrime(int p) {     // generate the number  double checkNumber = Math.pow(2, p) - 1;     // First number of the series  double nextval = 4 % checkNumber;     // Generate the rest (p-2) terms  // of the series.  for (int i = 1; i < p - 1; i++)       nextval = (nextval * nextval - 2) % checkNumber;      // now if the (p-1)th term is  // 0 return true else false.  return (nextval == 0);  }     // Driver Program  public static void main(String[] args) {  // Check whether 2^p-1 is prime or not.  int p = 7;  double checkNumber = Math.pow(2, p) - 1;     if (isPrime(p))      System.out.println((int)checkNumber+" is Prime.");  else     System.out.println((int)checkNumber+" is not Prime.");     }  }  // This code is contributed by mits

## Python3

 # Python3 Program to check for primality   # using Lucas-Lehmer series.     # Function to check whether (2^p - 1)  # is prime or not.  def isPrime(p):         # generate the number      checkNumber = 2 ** p - 1        # First number of the series      nextval = 4 % checkNumber         # Generate the rest (p-2) terms      # of the series      for i in range(1, p - 1):          nextval = (nextval * nextval - 2) % checkNumber         # now if the (p-1) the term is      # 0 return true else false.      if (nextval == 0): return True     else: return False    # Driver Code     # Check whetherr 2^(p-1)  # is prime or not.  p = 7 checkNumber = 2 ** p - 1    if isPrime(p):      print(checkNumber, 'is Prime.')  else:      print(checkNumber, 'is not Prime')     # This code is contributed by egoista.

## C#

 // C# program to check for primality using  // Lucas-Lehmer series.  using System;     class GFG{  // Function to check whether (2^p - 1)  // is prime or not.  static bool isPrime(int p) {     // generate the number  double checkNumber = Math.Pow(2, p) - 1;     // First number of the series  double nextval = 4 % checkNumber;     // Generate the rest (p-2) terms  // of the series.  for (int i = 1; i < p - 1; i++)       nextval = (nextval * nextval - 2) % checkNumber;      // now if the (p-1)th term is  // 0 return true else false.  return (nextval == 0);  }     // Driver Program  static void Main() {  // Check whether 2^p-1 is prime or not.  int p = 7;  double checkNumber = Math.Pow(2, p) - 1;     if (isPrime(p))      Console.WriteLine((int)checkNumber+" is Prime.");  else     Console.WriteLine((int)checkNumber+" is not Prime.");     }  }  // This code is contributed by mits

## PHP

 

Output:

127 is Prime.


The largest prime number at the time of writing this article is (2^(77232917) – 1) (discovered 2017-12-26). It has 23, 249, 425 digits. This prime numbers are found in the same way discussed above. Huge computational power and several months of processing is required to find out this kind of large prime numbers.
Interesting fact is that for checking this much big prime numbers, p are also taken prime. After processing if it finds that the number x is not prime then p is taken as the next prime number and the same process is run.

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.