Previous perfect square and cube number smaller than number N

Given an integer N, the task is to find the previous perfect square or perfect cube smaller than the number N.

Examples:

Input: N = 6
Output:
Perfect Square = 4
Perfect Cube = 1

Input: N = 30
Output:
Perfect Square = 25
Perfect Cube = 27

Approach: Previous perfect square number less than N can be computed as follows:



  • Find the square root of given number N.
  • Calculate its floor value using floor function of the respective language.
  • Then subtract 1 from it if N is already a perfect square.
  • Print square of that number.

Previous perfect cube number less than N can be computed as follows:

  • Find the cube root of given N.
  • Calculate its floor value using floor function of the respective language.
  • Then subtract 1 from it if N is already a perfect cube.
  • Print cube of that number.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find the
// previous perfect square and cube
// smaller than the given number
  
#include <cmath>
#include <iostream>
  
using namespace std;
  
// Function to find the previous
// perfect square of the number N
int previousPerfectSquare(int N)
{
    int prevN = floor(sqrt(N));
      
    // If N is alreay a perfect square
    // decrease prevN by 1.
    if (prevN * prevN == N)
        prevN -= 1;
  
    return prevN * prevN;
}
  
// Function to find the 
// previous perfect cube
int previousPerfectCube(int N)
{
    int prevN = floor(cbrt(N));
      
    // If N is alreay a perfect cube
    // decrease prevN by 1.
    if (prevN * prevN * prevN == N)
        prevN -= 1;
          
    return prevN * prevN * prevN;
}
  
// Driver Code
int main()
{
    int n = 30;
    cout << previousPerfectSquare(n) << "\n";
    cout << previousPerfectCube(n) << "\n";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find the
// previous perfect square and cube
// smaller than the given number
import java.util.*;
  
class GFG{
  
// Function to find the previous
// perfect square of the number N
static int previousPerfectSquare(int N)
{
    int prevN = (int)Math.floor(Math.sqrt(N));
      
    // If N is alreay a perfect square
    // decrease prevN by 1.
    if (prevN * prevN == N)
        prevN -= 1;
  
    return prevN * prevN;
}
  
// Function to find the 
// previous perfect cube
static int previousPerfectCube(int N)
{
    int prevN = (int)Math.floor(Math.cbrt(N));
      
    // If N is alreay a perfect cube
    // decrease prevN by 1.
    if (prevN * prevN * prevN == N)
        prevN -= 1;
          
    return prevN * prevN * prevN;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 30;
    System.out.println(previousPerfectSquare(n));
    System.out.println(previousPerfectCube(n));
}
}
  
// This code is contributed by Rohit_ranjan

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find the
# previous perfect square and cube
# smaller than the given number
import math
import numpy as np 
  
# Function to find the previous
# perfect square of the number N
def previousPerfectSquare(N):
  
    prevN = math.floor(math.sqrt(N));
      
    # If N is alreay a perfect square
    # decrease prevN by 1.
    if (prevN * prevN == N):
        prevN -= 1;
  
    return prevN * prevN;
  
# Function to find the 
# previous perfect cube
def previousPerfectCube(N):
  
    prevN = math.floor(np.cbrt(N));
      
    # If N is alreay a perfect cube
    # decrease prevN by 1.
    if (prevN * prevN * prevN == N):
        prevN -= 1;
          
    return prevN * prevN * prevN;
  
# Driver Code
n = 30;
  
print(previousPerfectSquare(n));
print(previousPerfectCube(n));
  
# This code is contributed by Code_Mech

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find the
// previous perfect square and cube
// smaller than the given number
using System;
  
class GFG{
  
// Function to find the previous
// perfect square of the number N
static int previousPerfectSquare(int N)
{
    int prevN = (int)Math.Floor(Math.Sqrt(N));
      
    // If N is alreay a perfect square
    // decrease prevN by 1.
    if (prevN * prevN == N)
        prevN -= 1;
  
    return prevN * prevN;
}
  
// Function to find the 
// previous perfect cube
static int previousPerfectCube(int N)
{
    int prevN = (int)Math.Floor(Math.Cbrt(N));
      
    // If N is alreay a perfect cube
    // decrease prevN by 1.
    if (prevN * prevN * prevN == N)
        prevN -= 1;
          
    return prevN * prevN * prevN;
}
  
// Driver Code
public static void Main(String[] args)
{
    int n = 30;
      
    Console.WriteLine(previousPerfectSquare(n));
    Console.WriteLine(previousPerfectCube(n));
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Output:

25
27

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.