Skip to content
Related Articles

Related Articles

Improve Article

Previous greater element

  • Difficulty Level : Medium
  • Last Updated : 13 May, 2021
Geek Week

Given an array of distinct elements, find previous greater element for every element. If previous greater element does not exist, print -1.
Examples: 
 

Input : arr[] = {10, 4, 2, 20, 40, 12, 30}
Output :         -1, 10, 4, -1, -1, 40, 40

Input : arr[] = {10, 20, 30, 40}
Output :        -1, -1, -1, -1

Input : arr[] = {40, 30, 20, 10}
Output :        -1, 40, 30, 20

Expected time complexity : O(n)
 

A simple solution is to run two nested loops. The outer loop picks an element one by one. The inner loop, find the previous element that is greater.
 

C++




// C++ program previous greater element
// A naive solution to print previous greater
// element for every element in an array.
#include <bits/stdc++.h>
using namespace std;
 
void prevGreater(int arr[], int n)
{
    // Previous greater for first element never
    // exists, so we print -1.
    cout << "-1, ";
 
    // Let us process remaining elements.
    for (int i = 1; i < n; i++) {
 
        // Find first element on left side
        // that is greater than arr[i].
        int j;
        for (j = i-1; j >= 0; j--) {
            if (arr[i] < arr[j]) {
            cout << arr[j] << ", ";
            break;
            }            
        }
 
        // If all elements on left are smaller.
        if (j == -1)
        cout << "-1, ";
    }
}
// Driver code
int main()
{
    int arr[] = { 10, 4, 2, 20, 40, 12, 30 };
    int n = sizeof(arr) / sizeof(arr[0]);
    prevGreater(arr, n);
    return 0;
}

Java




// Java program previous greater element
// A naive solution to print
// previous greater element
// for every element in an array.
import java.io.*;
import java.util.*;
import java.lang.*;
 
class GFG
{
static void prevGreater(int arr[],
                        int n)
{
    // Previous greater for
    // first element never
    // exists, so we print -1.
    System.out.print("-1, ");
 
    // Let us process
    // remaining elements.
    for (int i = 1; i < n; i++)
    {
 
        // Find first element on
        // left side that is
        // greater than arr[i].
        int j;
        for (j = i-1; j >= 0; j--)
        {
            if (arr[i] < arr[j])
            {
            System.out.print(arr[j] + ", ");
            break;
            }            
        }
 
        // If all elements on
        // left are smaller.
        if (j == -1)
        System.out.print("-1, ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = {10, 4, 2, 20, 40, 12, 30};
    int n = arr.length;
    prevGreater(arr, n);
}
}

Python 3




# Python 3 program previous greater element
# A naive solution to print previous greater
# element for every element in an array.
def prevGreater(arr, n) :
 
    # Previous greater for first element never
    # exists, so we print -1.
    print("-1",end = ", ")
 
    # Let us process remaining elements.
    for i in range(1, n) :
        flag = 0
 
        # Find first element on left side
        # that is greater than arr[i].
        for j in range(i-1, -1, -1) :
            if arr[i] < arr[j] :
                print(arr[j],end = ", ")
                flag = 1
                break
 
        # If all elements on left are smaller.
        if j == 0 and flag == 0:
            print("-1",end = ", ")
 
 
# Driver code
if __name__ == "__main__" :
    arr = [10, 4, 2, 20, 40, 12, 30]
    n = len(arr)
    prevGreater(arr, n)
 
# This code is contributed by ANKITRAI1

C#




// C# program previous greater element
// A naive solution to print
// previous greater element
// for every element in an array.
 
using System;
class GFG
{
static void prevGreater(int[] arr,
                        int n)
{
    // Previous greater for
    // first element never
    // exists, so we print -1.
    Console.Write("-1, ");
 
    // Let us process
    // remaining elements.
    for (int i = 1; i < n; i++)
    {
 
        // Find first element on
        // left side that is
        // greater than arr[i].
        int j;
        for (j = i-1; j >= 0; j--)
        {
            if (arr[i] < arr[j])
            {
            Console.Write(arr[j] + ", ");
            break;
            }            
        }
 
        // If all elements on
        // left are smaller.
        if (j == -1)
        Console.Write("-1, ");
    }
}
 
// Driver Code
public static void Main()
{
    int[] arr = {10, 4, 2, 20, 40, 12, 30};
    int n = arr.Length;
    prevGreater(arr, n);
}
}

PHP




<?php
// php program previous greater element
// A naive solution to print previous greater
// element for every element in an array.
 
function prevGreater(&$arr,$n)
{
    // Previous greater for first element never
    // exists, so we print -1.
    echo( "-1, ");
 
    // Let us process remaining elements.
    for ($i = 1; $i < $n; $i++)
    {
 
        // Find first element on left side
        // that is greater than arr[i].
        for ($j = $i-1; $j >= 0; $j--)
    {
            if ($arr[$i] < $arr[$j])
        {
            echo($arr[$j]);
        echo( ", ");
            break;
            }            
        }
 
        // If all elements on left are smaller.
        if ($j == -1)
        echo("-1, ");
    }
}
 
// Driver code
$arr = array(10, 4, 2, 20, 40, 12, 30);
$n = sizeof($arr) ;
prevGreater($arr, $n);
 
//This code is contributed by Shivi_Aggarwal.
     
?>

Javascript




<script>
// Javascript program previous greater element
// A naive solution to print
// previous greater element
// for every element in an array.
     
    function prevGreater(arr,n)
    {
        // Previous greater for
    // first element never
    // exists, so we print -1.
    document.write("-1, ");
   
    // Let us process
    // remaining elements.
    for (let i = 1; i < n; i++)
    {
   
        // Find first element on
        // left side that is
        // greater than arr[i].
        let j;
        for (j = i-1; j >= 0; j--)
        {
            if (arr[i] < arr[j])
            {
            document.write(arr[j] + ", ");
            break;
            }            
        }
   
        // If all elements on
        // left are smaller.
        if (j == -1)
        document.write("-1, ");
    }
    }
     
    // Driver Code
    let arr=[10, 4, 2, 20, 40, 12, 30];
    let n = arr.length;
    prevGreater(arr, n);
     
 
// This code is contributed by avanitrachhadiya2155
</script>
Output: 
-1, 10, 4, -1, -1, 40, 40

 

An efficient solution is to use stack data structure. If we take a closer look, we can notice that this problem is a variation of stock span problem. We maintain previous greater element in a stack.
 



C++




// C++ program previous greater element
// An efficient solution to print previous greater
// element for every element in an array.
#include <bits/stdc++.h>
using namespace std;
 
void prevGreater(int arr[], int n)
{
    // Create a stack and push index of first element
    // to it
    stack<int> s;
    s.push(arr[0]);
     
    // Previous greater for first element is always -1.
    cout << "-1, ";
 
    // Traverse remaining elements
    for (int i = 1; i < n; i++) {
 
        // Pop elements from stack while stack is not empty
        // and top of stack is smaller than arr[i]. We
        // always have elements in decreasing order in a
        // stack.
        while (s.empty() == false && s.top() < arr[i])
            s.pop();
 
        // If stack becomes empty, then no element is greater
        // on left side. Else top of stack is previous
        // greater.
        s.empty() ? cout << "-1, " : cout << s.top() << ", ";
 
        s.push(arr[i]);
    }
}
// Driver code
int main()
{
    int arr[] = { 10, 4, 2, 20, 40, 12, 30 };
    int n = sizeof(arr) / sizeof(arr[0]);
    prevGreater(arr, n);
    return 0;
}

Java




// Java program previous greater element
// An efficient solution to
// print previous greater
// element for every element
// in an array.
import java.io.*;
import java.util.*;
import java.lang.*;
 
class GFG
{
static void prevGreater(int arr[],
                        int n)
{
    // Create a stack and push
    // index of first element
    // to it
    Stack<Integer> s = new Stack<Integer>();
    s.push(arr[0]);
     
    // Previous greater for
    // first element is always -1.
    System.out.print("-1, ");
 
    // Traverse remaining elements
    for (int i = 1; i < n; i++)
    {
 
        // Pop elements from stack
        // while stack is not empty
        // and top of stack is smaller
        // than arr[i]. We always have
        // elements in decreasing order
        // in a stack.
        while (s.empty() == false &&
            s.peek() < arr[i])
            s.pop();
 
        // If stack becomes empty, then
        // no element is greater on left
        // side. Else top of stack is
        // previous greater.
        if (s.empty() == true)
            System.out.print("-1, ");
        else
            System.out.print(s.peek() + ", ");
 
        s.push(arr[i]);
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 10, 4, 2, 20, 40, 12, 30 };
    int n = arr.length;
    prevGreater(arr, n);
}
}

Python3




# Python3 program to print previous greater element
# An efficient solution to print previous greater
# element for every element in an array.
import math as mt
 
def prevGreater(arr, n):
 
    # Create a stack and push index of
    # first element to it
    s = list();
    s.append(arr[0])
     
    # Previous greater for first element
    # is always -1.
    print("-1, ", end = "")
 
    # Traverse remaining elements
    for i in range(1, n):
 
        # Pop elements from stack while stack is
        # not empty and top of stack is smaller
        # than arr[i]. We always have elements in
        # decreasing order in a stack.
        while (len(s) > 0 and s[-1] < arr[i]):
            s.pop()
 
        # If stack becomes empty, then no element
        # is greater on left side. Else top of stack
        # is previous greater.
        if len(s) == 0:
            print("-1, ", end = "")
        else:
            print(s[-1], ", ", end = "")
 
        s.append(arr[i])
     
# Driver code
arr = [ 10, 4, 2, 20, 40, 12, 30 ]
n = len(arr)
prevGreater(arr, n)
 
# This code is contributed by
# mohit kumar 29

C#




// C# program previous greater element
// An efficient solution to
// print previous greater
// element for every element
// in an array.
using System;
using System.Collections.Generic;
 
class GFG
{
static void prevGreater(int []arr,
                        int n)
{
    // Create a stack and push
    // index of first element
    // to it
    Stack<int> s = new Stack<int>();
    s.Push(arr[0]);
     
    // Previous greater for
    // first element is always -1.
    Console.Write("-1, ");
 
    // Traverse remaining elements
    for (int i = 1; i < n; i++)
    {
 
        // Pop elements from stack
        // while stack is not empty
        // and top of stack is smaller
        // than arr[i]. We always have
        // elements in decreasing order
        // in a stack.
        while (s.Count != 0 &&
            s.Peek() < arr[i])
            s.Pop();
 
        // If stack becomes empty, then
        // no element is greater on left
        // side. Else top of stack is
        // previous greater.
        if (s.Count == 0)
            Console.Write("-1, ");
        else
            Console.Write(s.Peek() + ", ");
 
        s.Push(arr[i]);
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 10, 4, 2, 20, 40, 12, 30 };
    int n = arr.Length;
    prevGreater(arr, n);
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
// Javascript program previous greater element
// An efficient solution to
// print previous greater
// element for every element
// in an array.
     
    function prevGreater(arr,n)
    {
        // Create a stack and push
    // index of first element
    // to it
    let s = [];
    s.push(arr[0]);
       
    // Previous greater for
    // first element is always -1.
    document.write("-1, ");
   
    // Traverse remaining elements
    for (let i = 1; i < n; i++)
    {
   
        // Pop elements from stack
        // while stack is not empty
        // and top of stack is smaller
        // than arr[i]. We always have
        // elements in decreasing order
        // in a stack.
        while (s.length!=0 &&
            s[s.length-1] < arr[i])
            s.pop();
   
        // If stack becomes empty, then
        // no element is greater on left
        // side. Else top of stack is
        // previous greater.
        if (s.length==0)
            document.write("-1, ");
        else
            document.write(s[s.length-1] + ", ");
   
        s.push(arr[i]);
    }
    }
     
    // Driver Code
    let arr=[10, 4, 2, 20, 40, 12, 30];
    let n = arr.length;
    prevGreater(arr, n);
 
     
     
// This code is contributed by rag2127
</script>
Output: 
-1, 10, 4, -1, -1, 40, 40

 

Time Complexity: O(n). It seems more than O(n) at first look. If we take a closer look, we can observe that every element of array is added and removed from stack at most once. So there are total 2n operations at most. Assuming that a stack operation takes O(1) time, we can say that the time complexity is O(n).
Auxiliary Space: O(n) in worst case when all elements are sorted in decreasing order.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :