# Preorder Successor of a Node in Binary Tree

Given a binary tree and a node in the binary tree, find preorder successor of the given node. It may be assumed that every node has parent link.
Examples:

```Consider the following binary tree
20
/      \
10       26
/  \     /   \
4     18  24    27
/  \
14   19
/  \
13  15
Input :  4
Output : 18
Preorder traversal of given tree is 20, 10, 4,
18, 14, 13, 15, 19, 26, 24, 27.

Input :  19
Output : 26
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

A simple solution is to first store Preorder traversal of the given tree in an array then linearly search given node and print node next to it.

Time Complexity : O(n)
Auxiliary Space : O(n)

An efficient solution is based on below observations.

1. If left child of given node exists, then the left child is preorder successor.
2. If left child does not exist and given node is left child of its parent, then its sibling is its preorder successor.
3. If none of above conditions are satisfied (left child does not exist and given node is not left child of its parent), then we move up using parent pointers until one of the following happens.
• We reach root. In this case, preorder successor does not exist.
• Current node (one of the ancestors of given node) is left child of its parent, in this case preorder successor is sibling of current node.

## C++

 `// CPP program to find preorder successor of ` `// a node in Binary Tree. ` `#include ` `using` `namespace` `std; ` ` `  `struct` `Node { ` `    ``struct` `Node *left, *right, *parent; ` `    ``int` `key; ` `}; ` ` `  `Node* newNode(``int` `key) ` `{ ` `    ``Node* temp = ``new` `Node; ` `    ``temp->left = temp->right = temp->parent = NULL; ` `    ``temp->key = key; ` `    ``return` `temp; ` `} ` ` `  `Node* preorderSuccessor(Node* root, Node* n) ` `{ ` `    ``// If left child exists, then it is preorder ` `    ``// successor. ` `    ``if` `(n->left) ` `        ``return` `n->left; ` ` `  `    ``// If left child does not exist, then ` `    ``// travel up (using parent pointers) ` `    ``// until we reach a node which is left ` `    ``// child of its parent. ` `    ``Node *curr = n, *parent = curr->parent; ` `    ``while` `(parent != NULL && parent->right == curr) { ` `        ``curr = curr->parent; ` `        ``parent = parent->parent; ` `    ``} ` ` `  `    ``// If we reached root, then the given ` `    ``// node has no preorder successor ` `    ``if` `(parent == NULL) ` `        ``return` `NULL; ` ` `  `    ``return` `parent->right; ` `} ` ` `  `int` `main() ` `{ ` `    ``Node* root = newNode(20); ` `    ``root->parent = NULL; ` `    ``root->left = newNode(10); ` `    ``root->left->parent = root; ` `    ``root->left->left = newNode(4); ` `    ``root->left->left->parent = root->left; ` `    ``root->left->right = newNode(18); ` `    ``root->left->right->parent = root->left; ` `    ``root->right = newNode(26); ` `    ``root->right->parent = root; ` `    ``root->right->left = newNode(24); ` `    ``root->right->left->parent = root->right; ` `    ``root->right->right = newNode(27); ` `    ``root->right->right->parent = root->right; ` `    ``root->left->right->left = newNode(14); ` `    ``root->left->right->left->parent = root->left->right; ` `    ``root->left->right->left->left = newNode(13); ` `    ``root->left->right->left->left->parent = root->left->right->left; ` `    ``root->left->right->left->right = newNode(15); ` `    ``root->left->right->left->right->parent = root->left->right->left; ` `    ``root->left->right->right = newNode(19); ` `    ``root->left->right->right->parent = root->left->right; ` ` `  `    ``Node* res = preorderSuccessor(root, root->left->right->right); ` ` `  `    ``if` `(res) { ` `        ``printf``(``"Preorder successor of %d is %d\n"``, ` `               ``root->left->right->right->key, res->key); ` `    ``} ` `    ``else` `{ ` `        ``printf``(``"Preorder successor of %d is NULL\n"``, ` `               ``root->left->right->right->key); ` `    ``} ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find preorder successor of ` `// a node in Binary Tree. ` `class` `Solution ` `{ ` ` `  `static` `class` `Node  ` `{ ` `    ``Node left, right, parent; ` `    ``int` `key; ` `}; ` ` `  `static` `Node newNode(``int` `key) ` `{ ` `    ``Node temp = ``new` `Node(); ` `    ``temp.left = temp.right = temp.parent = ``null``; ` `    ``temp.key = key; ` `    ``return` `temp; ` `} ` ` `  `static` `Node preorderSuccessor(Node root, Node n) ` `{ ` `    ``// If left child exists, then it is preorder ` `    ``// successor. ` `    ``if` `(n.left != ``null``) ` `        ``return` `n.left; ` ` `  `    ``// If left child does not exist, then ` `    ``// travel up (using parent pointers) ` `    ``// until we reach a node which is left ` `    ``// child of its parent. ` `    ``Node curr = n, parent = curr.parent; ` `    ``while` `(parent != ``null` `&& parent.right == curr)  ` `    ``{ ` `        ``curr = curr.parent; ` `        ``parent = parent.parent; ` `    ``} ` ` `  `    ``// If we reached root, then the given ` `    ``// node has no preorder successor ` `    ``if` `(parent == ``null``) ` `        ``return` `null``; ` ` `  `    ``return` `parent.right; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``Node root = newNode(``20``); ` `    ``root.parent = ``null``; ` `    ``root.left = newNode(``10``); ` `    ``root.left.parent = root; ` `    ``root.left.left = newNode(``4``); ` `    ``root.left.left.parent = root.left; ` `    ``root.left.right = newNode(``18``); ` `    ``root.left.right.parent = root.left; ` `    ``root.right = newNode(``26``); ` `    ``root.right.parent = root; ` `    ``root.right.left = newNode(``24``); ` `    ``root.right.left.parent = root.right; ` `    ``root.right.right = newNode(``27``); ` `    ``root.right.right.parent = root.right; ` `    ``root.left.right.left = newNode(``14``); ` `    ``root.left.right.left.parent = root.left.right; ` `    ``root.left.right.left.left = newNode(``13``); ` `    ``root.left.right.left.left.parent = root.left.right.left; ` `    ``root.left.right.left.right = newNode(``15``); ` `    ``root.left.right.left.right.parent = root.left.right.left; ` `    ``root.left.right.right = newNode(``19``); ` `    ``root.left.right.right.parent = root.left.right; ` ` `  `    ``Node res = preorderSuccessor(root, root.left.right.right); ` ` `  `    ``if` `(res != ``null``)  ` `    ``{ ` `        ``System.out.printf(``"Preorder successor of %d is %d\n"``, ` `            ``root.left.right.right.key, res.key); ` `    ``} ` `    ``else` `    ``{ ` `        ``System.out.printf(``"Preorder successor of %d is null\n"``, ` `            ``root.left.right.right.key); ` `    ``} ` `} ` `} ` ` `  `// This code is contributed by Arnab Kundu `

## Python3

 `""" Python3 program to find preorder ` `successor of a node in Binary Tree."""` ` `  `# A Binary Tree Node  ` `# Utility function to create a new tree node  ` `class` `newNode:  ` ` `  `    ``# Constructor to create a new node  ` `    ``def` `__init__(``self``, data):  ` `        ``self``.key ``=` `data  ` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None` `        ``self``.parent``=``None` ` `  `def` `preorderSuccessor(root, n) : ` ` `  `    ``# If left child exists, then it is ` `    ``# preorder successor.  ` `    ``if` `(n.left) : ` `        ``return` `n.left  ` ` `  `    ``# If left child does not exist, then  ` `    ``# travel up (using parent pointers)  ` `    ``# until we reach a node which is left  ` `    ``# child of its parent.  ` `    ``curr ``=` `n ` `    ``parent ``=` `curr.parent  ` `    ``while` `(parent !``=` `None` `and`  `           ``parent.right ``=``=` `curr):  ` `        ``curr ``=` `curr.parent  ` `        ``parent ``=` `parent.parent  ` `     `  `    ``# If we reached root, then the given  ` `    ``# node has no preorder successor  ` `    ``if` `(parent ``=``=` `None``) : ` `        ``return` `None` ` `  `    ``return` `parent.right ` `     `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``root ``=` `newNode(``20``)  ` `    ``root.parent ``=` `None` `    ``root.left ``=` `newNode(``10``)  ` `    ``root.left.parent ``=` `root  ` `    ``root.left.left ``=` `newNode(``4``)  ` `    ``root.left.left.parent ``=` `root.left  ` `    ``root.left.right ``=` `newNode(``18``)  ` `    ``root.left.right.parent ``=` `root.left  ` `    ``root.right ``=` `newNode(``26``)  ` `    ``root.right.parent ``=` `root  ` `    ``root.right.left ``=` `newNode(``24``)  ` `    ``root.right.left.parent ``=` `root.right  ` `    ``root.right.right ``=` `newNode(``27``)  ` `    ``root.right.right.parent ``=` `root.right  ` `    ``root.left.right.left ``=` `newNode(``14``)  ` `    ``root.left.right.left.parent ``=` `root.left.right  ` `    ``root.left.right.left.left ``=` `newNode(``13``)  ` `    ``root.left.right.left.left.parent ``=` `root.left.right.left  ` `    ``root.left.right.left.right ``=` `newNode(``15``)  ` `    ``root.left.right.left.right.parent ``=` `root.left.right.left  ` `    ``root.left.right.right ``=` `newNode(``19``)  ` `    ``root.left.right.right.parent ``=` `root.left.right ` `    ``res ``=` `preorderSuccessor(root, root.left.right.right)  ` ` `  `    ``if` `(res) :  ` `        ``print``(``"Preorder successor of"``,  ` `              ``root.left.right.right.key, ``"is"``, res.key)  ` `     `  `    ``else``: ` `        ``print``(``"Preorder successor of"``,  ` `              ``root.left.right.right.key,``"is None"``) ` ` `  `# This code is contributed  ` `# by SHUBHAMSINGH10 `

## C#

 `// C# program to find preorder successor of ` `// a node in Binary Tree. ` `using` `System; ` `     `  `class` `GFG ` `{ ` ` `  `public` `class` `Node  ` `{ ` `    ``public` `Node left, right, parent; ` `    ``public` `int` `key; ` `}; ` ` `  `static` `Node newNode(``int` `key) ` `{ ` `    ``Node temp = ``new` `Node(); ` `    ``temp.left = temp.right = temp.parent = ``null``; ` `    ``temp.key = key; ` `    ``return` `temp; ` `} ` ` `  `static` `Node preorderSuccessor(Node root, Node n) ` `{ ` `    ``// If left child exists, then it is preorder ` `    ``// successor. ` `    ``if` `(n.left != ``null``) ` `        ``return` `n.left; ` ` `  `    ``// If left child does not exist, then ` `    ``// travel up (using parent pointers) ` `    ``// until we reach a node which is left ` `    ``// child of its parent. ` `    ``Node curr = n, parent = curr.parent; ` `    ``while` `(parent != ``null` `&& parent.right == curr)  ` `    ``{ ` `        ``curr = curr.parent; ` `        ``parent = parent.parent; ` `    ``} ` ` `  `    ``// If we reached root, then the given ` `    ``// node has no preorder successor ` `    ``if` `(parent == ``null``) ` `        ``return` `null``; ` ` `  `    ``return` `parent.right; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String []args) ` `{ ` `    ``Node root = newNode(20); ` `    ``root.parent = ``null``; ` `    ``root.left = newNode(10); ` `    ``root.left.parent = root; ` `    ``root.left.left = newNode(4); ` `    ``root.left.left.parent = root.left; ` `    ``root.left.right = newNode(18); ` `    ``root.left.right.parent = root.left; ` `    ``root.right = newNode(26); ` `    ``root.right.parent = root; ` `    ``root.right.left = newNode(24); ` `    ``root.right.left.parent = root.right; ` `    ``root.right.right = newNode(27); ` `    ``root.right.right.parent = root.right; ` `    ``root.left.right.left = newNode(14); ` `    ``root.left.right.left.parent = root.left.right; ` `    ``root.left.right.left.left = newNode(13); ` `    ``root.left.right.left.left.parent = root.left.right.left; ` `    ``root.left.right.left.right = newNode(15); ` `    ``root.left.right.left.right.parent = root.left.right.left; ` `    ``root.left.right.right = newNode(19); ` `    ``root.left.right.right.parent = root.left.right; ` ` `  `    ``Node res = preorderSuccessor(root, root.left.right.right); ` ` `  `    ``if` `(res != ``null``)  ` `    ``{ ` `        ``Console.Write(``"Preorder successor of {0} is {1}\n"``, ` `            ``root.left.right.right.key, res.key); ` `    ``} ` `    ``else` `    ``{ ` `        ``Console.Write(``"Preorder successor of {0} is null\n"``, ` `            ``root.left.right.right.key); ` `    ``} ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar  `

Output:

```Preorder successor of 19 is 26
```

Time Complexity : O(h) where h is height of given Binary Tree
Auxiliary Space : O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.