Related Articles

# Prefix to Postfix Conversion

• Difficulty Level : Easy
• Last Updated : 30 Aug, 2021

Prefix: An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 operand2).
Example : *+AB-CD (Infix : (A+B) * (C-D) )

Postfix: An expression is called the postfix expression if the operator appears in the expression after the operands. Simply of the form (operand1 operand2 operator).
Example : AB+CD-* (Infix : (A+B * (C-D) )
Given a Prefix expression, convert it into a Postfix expression.
Conversion of Prefix expression directly to Postfix without going through the process of converting them first to Infix and then to Postfix is much better in terms of computation and better understanding the expression (Computers evaluate using Postfix expression).

Examples:

```Input :  Prefix :  *+AB-CD
Output : Postfix : AB+CD-*
Explanation : Prefix to Infix :  (A+B) * (C-D)
Infix to Postfix :  AB+CD-*

Input :  Prefix :  *-A/BC-/AKL
Output : Postfix : ABC/-AK/L-*
Explanation : Prefix to Infix :  (A-(B/C))*((A/K)-L)
Infix to Postfix : ABC/-AK/L-* ```

Algorithm for Prefix to Postfix

• Read the Prefix expression in reverse order (from right to left)
• If the symbol is an operand, then push it onto the Stack
• If the symbol is an operator, then pop two operands from the Stack
Create a string by concatenating the two operands and the operator after them.
string = operand1 + operand2 + operator
And push the resultant string back to Stack
• Repeat the above steps until end of Prefix expression.

## C++

 `// CPP Program to convert prefix to postfix``#include ``#include ``using` `namespace` `std;` `// function to check if character is operator or not``bool` `isOperator(``char` `x)``{``    ``switch` `(x) {``    ``case` `'+'``:``    ``case` `'-'``:``    ``case` `'/'``:``    ``case` `'*'``:``        ``return` `true``;``    ``}``    ``return` `false``;``}` `// Convert prefix to Postfix expression``string preToPost(string pre_exp)``{` `    ``stack s;``    ``// length of expression``    ``int` `length = pre_exp.size();` `    ``// reading from right to left``    ``for` `(``int` `i = length - 1; i >= 0; i--)``    ``{``        ``// check if symbol is operator``        ``if` `(isOperator(pre_exp[i]))``        ``{``            ``// pop two operands from stack``            ``string op1 = s.top();``            ``s.pop();``            ``string op2 = s.top();``            ``s.pop();` `            ``// concat the operands and operator``            ``string temp = op1 + op2 + pre_exp[i];` `            ``// Push string temp back to stack``            ``s.push(temp);``        ``}` `        ``// if symbol is an operand``        ``else` `{` `            ``// push the operand to the stack``            ``s.push(string(1, pre_exp[i]));``        ``}``    ``}` `    ``// stack contains only the Postfix expression``    ``return` `s.top();``}` `// Driver Code``int` `main()``{``    ``string pre_exp = ``"*-A/BC-/AKL"``;``    ``cout << ``"Postfix : "` `<< preToPost(pre_exp);``    ``return` `0;``}`

## Java

 `// JavaProgram to convert prefix to postfix``import` `java.util.*;` `class` `GFG {` `    ``// function to check if character``    ``// is operator or not``    ``static` `boolean` `isOperator(``char` `x)``    ``{``        ``switch` `(x) {``        ``case` `'+'``:``        ``case` `'-'``:``        ``case` `'/'``:``        ``case` `'*'``:``            ``return` `true``;``        ``}``        ``return` `false``;``    ``}` `    ``// Convert prefix to Postfix expression``    ``static` `String preToPost(String pre_exp)``    ``{` `        ``Stack s = ``new` `Stack();` `        ``// length of expression``        ``int` `length = pre_exp.length();` `        ``// reading from right to left``        ``for` `(``int` `i = length - ``1``; i >= ``0``; i--)``        ``{``            ``// check if symbol is operator``            ``if` `(isOperator(pre_exp.charAt(i)))``            ``{``                ``// pop two operands from stack``                ``String op1 = s.peek();``                ``s.pop();``                ``String op2 = s.peek();``                ``s.pop();` `                ``// concat the operands and operator``                ``String temp = op1 + op2 + pre_exp.charAt(i);` `                ``// Push String temp back to stack``                ``s.push(temp);``            ``}` `            ``// if symbol is an operand``            ``else` `{``                ``// push the operand to the stack``                ``s.push(pre_exp.charAt(i) + ``""``);``            ``}``        ``}` `        ``// stack contains only the Postfix expression``        ``return` `s.peek();``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String args[])``    ``{``        ``String pre_exp = ``"*-A/BC-/AKL"``;``        ``System.out.println(``"Postfix : "``                           ``+ preToPost(pre_exp));``    ``}``}` `// This code is contributed by Arnab Kundu`

## Python 3

 `# Write Python3 code here``# -*- coding: utf-8 -*-` `# Example Input``s ``=` `"*-A/BC-/AKL"` `# Stack for storing operands``stack ``=` `[]` `operators ``=` `set``([``'+'``, ``'-'``, ``'*'``, ``'/'``, ``'^'``])` `# Reversing the order``s ``=` `s[::``-``1``]` `# iterating through individual tokens``for` `i ``in` `s:` `    ``# if token is operator``    ``if` `i ``in` `operators:` `        ``# pop 2 elements from stack``        ``a ``=` `stack.pop()``        ``b ``=` `stack.pop()` `        ``# concatenate them as operand1 +``        ``# operand2 + operator``        ``temp ``=` `a``+``b``+``i``        ``stack.append(temp)` `    ``# else if operand``    ``else``:``        ``stack.append(i)` `# printing final output``print``(``*``stack)`

## C#

 `// C# Program to convert prefix to postfix``using` `System;``using` `System.Collections.Generic;` `class` `GFG {` `    ``// function to check if character``    ``// is operator or not``    ``static` `bool` `isOperator(``char` `x)``    ``{``        ``switch` `(x) {``        ``case` `'+'``:``        ``case` `'-'``:``        ``case` `'/'``:``        ``case` `'*'``:``            ``return` `true``;``        ``}``        ``return` `false``;``    ``}` `    ``// Convert prefix to Postfix expression``    ``static` `String preToPost(String pre_exp)``    ``{` `        ``Stack s = ``new` `Stack();` `        ``// length of expression``        ``int` `length = pre_exp.Length;` `        ``// reading from right to left``        ``for` `(``int` `i = length - 1; i >= 0; i--)``        ``{` `            ``// check if symbol is operator``            ``if` `(isOperator(pre_exp[i]))``            ``{``                ``// pop two operands from stack``                ``String op1 = s.Peek();``                ``s.Pop();``                ``String op2 = s.Peek();``                ``s.Pop();` `                ``// concat the operands and operator``                ``String temp = op1 + op2 + pre_exp[i];` `                ``// Push String temp back to stack``                ``s.Push(temp);``            ``}` `            ``// if symbol is an operand``            ``else` `{``                ``// push the operand to the stack``                ``s.Push(pre_exp[i] + ``""``);``            ``}``        ``}` `        ``// stack contains only the Postfix expression``        ``return` `s.Peek();``    ``}` `    ``// Driver Code``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``String pre_exp = ``"*-A/BC-/AKL"``;``        ``Console.WriteLine(``"Postfix : "``                          ``+ preToPost(pre_exp));``    ``}``}` `/* This code contributed by PrinciRaj1992 */`

## Javascript

 ``
Output
`Postfix : ABC/-AK/L-*`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up