Prefix to Infix Conversion

Infix : An expression is called the Infix expression if the operator appears in between the operands in the expression. Simply of the form (operand1 operator operand2). 
Example : (A+B) * (C-D)

Prefix : An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 operand2). 
Example : *+AB-CD (Infix : (A+B) * (C-D) )

Given a Prefix expression, convert it into a Infix expression. 
Computers usually does the computation in either prefix or postfix (usually postfix). But for humans, its easier to understand an Infix expression rather than a prefix. Hence conversion is need for human understanding.

Examples: 

Input :  Prefix :  *+AB-CD
Output : Infix : ((A+B)*(C-D))

Input :  Prefix :  *-A/BC-/AKL
Output : Infix : ((A-(B/C))*((A/K)-L))

Algorithm for Prefix to Infix

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to convert prefix to Infix
#include <iostream>
#include <stack>
using namespace std;
 
// function to check if character is operator or not
bool isOperator(char x) {
  switch (x) {
  case '+':
  case '-':
  case '/':
  case '*':
    return true;
  }
  return false;
}
 
// Convert prefix to Infix expression
string preToInfix(string pre_exp) {
  stack<string> s;
 
  // length of expression
  int length = pre_exp.size();
 
  // reading from right to left
  for (int i = length - 1; i >= 0; i--) {
 
    // check if symbol is operator
    if (isOperator(pre_exp[i])) {
 
      // pop two operands from stack
      string op1 = s.top();   s.pop();
      string op2 = s.top();   s.pop();
 
      // concat the operands and operator
      string temp = "(" + op1 + pre_exp[i] + op2 + ")";
 
      // Push string temp back to stack
      s.push(temp);
    }
 
    // if symbol is an operand
    else {
 
      // push the operand to the stack
      s.push(string(1, pre_exp[i]));
    }
  }
 
  // Stack now contains the Infix expression
  return s.top();
}
 
// Driver Code
int main() {
  string pre_exp = "*-A/BC-/AKL";
  cout << "Infix : " << preToInfix(pre_exp);
  return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to convert prefix to Infix
import java.util.Stack;
 
class GFG{
 
// Function to check if character
// is operator or not    
static    boolean isOperator(char x)
{
    switch(x)
    {
        case '+':
        case '-':
        case '*':
        case '/':
            return true;
    }
    return false;
}
 
// Convert prefix to Infix expression
public static String convert(String str)
{
    Stack<String> stack = new Stack<>();
     
    // Length of expression
    int l = str.length();
     
    // Reading from right to left
    for(int i = l - 1; i >= 0; i--)
    {
        char c = str.charAt(i);
        if (isOperator(c))
        {
            String op1 = stack.pop();
            String op2 = stack.pop();
             
            // Concat the operands and operator
            String temp = "(" + op1 + c + op2 + ")";
            stack.push(temp);
        }
        else
        {
             
            // To make character to string
            stack.push(c + "");
        }
    }
    return stack.pop();
}
 
// Driver code
public static void main(String[] args)
{
    String exp = "*-A/BC-/AKL";
    System.out.println("Infix : " + convert(exp));
}
}
 
// This code is contributed by abbeyme
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Program to convert prefix to Infix
def prefixToInfix(prefix):
    stack = []
     
    # read prefix in reverse order
    i = len(prefix) - 1
    while i >= 0:
        if not isOperator(prefix[i]):
             
            # symbol is operand
            stack.append(prefix[i])
            i -= 1
        else:
           
            # symbol is operator
            str = "(" + stack.pop() + prefix[i] + stack.pop() + ")"
            stack.append(str)
            i -= 1
     
    return stack.pop()
 
def isOperator(c):
    if c == "*" or c == "+" or c == "-" or c == "/" or c == "^" or c == "(" or c == ")":
        return True
    else:
        return False
 
# Driver code
if __name__=="__main__":
    str = "*-A/BC-/AKL"
    print(prefixToInfix(str))
     
# This code is contributed by avishekarora
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to convert prefix to Infix
using System;
using System.Collections;
 
class GFG{
  
// Function to check if character
// is operator or not    
static bool isOperator(char x)
{
    switch(x)
    {
        case '+':
        case '-':
        case '*':
        case '/':
            return true;
    }
    return false;
}
  
// Convert prefix to Infix expression
public static string convert(string str)
{
    Stack stack = new Stack();
      
    // Length of expression
    int l = str.Length;
      
    // Reading from right to left
    for(int i = l - 1; i >= 0; i--)
    {
        char c = str[i];
         
        if (isOperator(c))
        {
            string op1 = (string)stack.Pop();
            string op2 = (string)stack.Pop();
              
            // Concat the operands and operator
            string temp = "(" + op1 + c + op2 + ")";
            stack.Push(temp);
        }
        else
        {
             
            // To make character to string
            stack.Push(c + "");
        }
    }
    return (string)stack.Pop();
}
  
// Driver code
public static void Main(string[] args)
{
    string exp = "*-A/BC-/AKL";
     
    Console.Write("Infix : " + convert(exp));
}
}
 
// This code is contributed by rutvik_56
chevron_right

Output: 
Infix : ((A-(B/C))*((A/K)-L))

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :