Power Set in Lexicographic order

This article is about generating Power set in lexicographical order.

Examples :

Input : abc
Output : a ab abc ac b bc c

The idea is to sort array first. After sorting, one by one fix characters and recursively generates all subsets starting from them. After every recursive call, we remove last character so that next permutation can be generated.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to generate power set in
// lexicographic order.
#include <bits/stdc++.h>
using namespace std;
  
// str : Stores input string
// n : Length of str.
// curr : Stores current permutation
// index : Index in current permutation, curr
void permuteRec(string str, int n,
                int index = -1, string curr = "")
{
    // base case
    if (index == n)
        return;
  
    cout << curr << "\n";
    for (int i = index + 1; i < n; i++) {
  
        curr += str[i];
        permuteRec(str, n, i, curr);
  
        // backtracking
        curr = curr.erase(curr.size() - 1);
    }
    return;
}
  
// Generates power set in lexicographic
// order.
void powerSet(string str)
{
    sort(str.begin(), str.end());
    permuteRec(str, str.size());
}
  
// Driver code
int main()
{
    string str = "cab";
    powerSet(str);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to generate power set in
// lexicographic order.
import java.util.*;
  
class GFG {
  
    // str : Stores input string
    // n : Length of str.
    // curr : Stores current permutation
    // index : Index in current permutation, curr
    static void permuteRec(String str, int n,
                           int index, String curr)
    {
        // base case
        if (index == n) {
            return;
        }
        System.out.println(curr);
        for (int i = index + 1; i < n; i++) {
  
            curr += str.charAt(i);
            permuteRec(str, n, i, curr);
  
            // backtracking
            curr = curr.substring(0, curr.length() - 1);
        }
        return;
    }
  
    // Generates power set in lexicographic
    // order.
    static void powerSet(String str)
    {
        char[] arr = str.toCharArray();
        Arrays.sort(arr);
        permuteRec(new String(arr), str.length(), -1, "");
    }
  
    // Driver code
    public static void main(String[] args)
    {
        String str = "cab";
        powerSet(str);
    }
}
  
/* This code contributed by PrinciRaj1992 */

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to generate power
# set in lexicographic order.
  
# str : Stores input string
# n : Length of str.
# curr : Stores current permutation
# index : Index in current permutation, curr
def permuteRec(string, n, index = -1, curr = ""):
  
    # base case
    if index == n:
        return
  
    if len(curr) > 0:
        print(curr)
  
    for i in range(index + 1, n):
        curr += string[i]
        permuteRec(string, n, i, curr)
  
        # backtracking
        curr = curr[:len(curr) - 1]
  
# Generates power set in lexicographic order
def powerSet(string):
    string = ''.join(sorted(string))
    permuteRec(string, len(string))
  
# Driver Code
if __name__ == "__main__":
    string = "cab"
    powerSet(string)
  
# This code is contributed by vibhu4agarwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to generate power set in
// lexicographic order.
using System;
  
class GFG {
  
    // str : Stores input string
    // n : Length of str.
    // curr : Stores current permutation
    // index : Index in current permutation, curr
    static void permuteRec(String str, int n,
                           int index, String curr)
    {
        // base case
        if (index == n) {
            return;
        }
        Console.WriteLine(curr);
        for (int i = index + 1; i < n; i++) {
  
            curr += str[i];
            permuteRec(str, n, i, curr);
  
            // backtracking
            curr = curr.Substring(0, curr.Length - 1);
        }
        return;
    }
  
    // Generates power set in lexicographic
    // order.
    static void powerSet(String str)
    {
        char[] arr = str.ToCharArray();
        Array.Sort(arr);
        permuteRec(new String(arr), str.Length, -1, "");
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        String str = "cab";
        powerSet(str);
    }
}
  
// This code contributed by Rajput-Ji

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to generate power 
// set in lexicographic order.
  
// str : Stores input string
// n : Length of str.
// curr : Stores current permutation
// index : Index in current permutation, curr
function permuteRec($str, $n, $index = -1, 
                              $curr = "")
{
    // base case
    if ($index == $n
        return;
  
    echo $curr."\n";
    for ($i = $index + 1; $i < $n; $i++) 
    {
  
        $curr=$curr.$str[$i];
        permuteRec($str, $n, $i, $curr);
  
        // backtracking
        $curr =""
    }
    return;
}
  
// Generates power set in lexicographic
// order.
function powerSet($str)
{
  
    $str = str_split($str);
    sort($str);
    permuteRec($str, sizeof($str));
}
  
// Driver code
$str = "cab";
powerSet($str);
  
// This code is contributed by Mithun Kumar
?>

chevron_right


Output :

a
ab
abc
ac
b
bc
c


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.