# Power Set in Lexicographic order

This article is about generating Power set in lexicographical order.

Examples :

```Input : abc
Output : a ab abc ac b bc c
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to sort array first. After sorting, one by one fix characters and recursively generates all subsets starting from them. After every recursive call, we remove last character so that next permutation can be generated.

## C++

 `// CPP program to generate power set in ` `// lexicographic order. ` `#include ` `using` `namespace` `std; ` ` `  `// str : Stores input string ` `// n : Length of str. ` `// curr : Stores current permutation ` `// index : Index in current permutation, curr ` `void` `permuteRec(string str, ``int` `n, ` `                ``int` `index = -1, string curr = ``""``) ` `{ ` `    ``// base case ` `    ``if` `(index == n) ` `        ``return``; ` ` `  `    ``cout << curr << ``"\n"``; ` `    ``for` `(``int` `i = index + 1; i < n; i++) { ` ` `  `        ``curr += str[i]; ` `        ``permuteRec(str, n, i, curr); ` ` `  `        ``// backtracking ` `        ``curr = curr.erase(curr.size() - 1); ` `    ``} ` `    ``return``; ` `} ` ` `  `// Generates power set in lexicographic ` `// order. ` `void` `powerSet(string str) ` `{ ` `    ``sort(str.begin(), str.end()); ` `    ``permuteRec(str, str.size()); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``string str = ``"cab"``; ` `    ``powerSet(str); ` `    ``return` `0; ` `} `

## Java

 `// Java program to generate power set in ` `// lexicographic order. ` `import` `java.util.*; ` ` `  `class` `GFG { ` ` `  `    ``// str : Stores input string ` `    ``// n : Length of str. ` `    ``// curr : Stores current permutation ` `    ``// index : Index in current permutation, curr ` `    ``static` `void` `permuteRec(String str, ``int` `n, ` `                           ``int` `index, String curr) ` `    ``{ ` `        ``// base case ` `        ``if` `(index == n) { ` `            ``return``; ` `        ``} ` `        ``System.out.println(curr); ` `        ``for` `(``int` `i = index + ``1``; i < n; i++) { ` ` `  `            ``curr += str.charAt(i); ` `            ``permuteRec(str, n, i, curr); ` ` `  `            ``// backtracking ` `            ``curr = curr.substring(``0``, curr.length() - ``1``); ` `        ``} ` `        ``return``; ` `    ``} ` ` `  `    ``// Generates power set in lexicographic ` `    ``// order. ` `    ``static` `void` `powerSet(String str) ` `    ``{ ` `        ``char``[] arr = str.toCharArray(); ` `        ``Arrays.sort(arr); ` `        ``permuteRec(``new` `String(arr), str.length(), -``1``, ``""``); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``String str = ``"cab"``; ` `        ``powerSet(str); ` `    ``} ` `} ` ` `  `/* This code contributed by PrinciRaj1992 */`

## Python3

 `# Python3 program to generate power ` `# set in lexicographic order. ` ` `  `# str : Stores input string ` `# n : Length of str. ` `# curr : Stores current permutation ` `# index : Index in current permutation, curr ` `def` `permuteRec(string, n, index ``=` `-``1``, curr ``=` `""): ` ` `  `    ``# base case ` `    ``if` `index ``=``=` `n: ` `        ``return` ` `  `    ``if` `len``(curr) > ``0``: ` `        ``print``(curr) ` ` `  `    ``for` `i ``in` `range``(index ``+` `1``, n): ` `        ``curr ``+``=` `string[i] ` `        ``permuteRec(string, n, i, curr) ` ` `  `        ``# backtracking ` `        ``curr ``=` `curr[:``len``(curr) ``-` `1``] ` ` `  `# Generates power set in lexicographic order ` `def` `powerSet(string): ` `    ``string ``=` `''.join(``sorted``(string)) ` `    ``permuteRec(string, ``len``(string)) ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `    ``string ``=` `"cab"` `    ``powerSet(string) ` ` `  `# This code is contributed by vibhu4agarwal `

## C#

 `// C# program to generate power set in ` `// lexicographic order. ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// str : Stores input string ` `    ``// n : Length of str. ` `    ``// curr : Stores current permutation ` `    ``// index : Index in current permutation, curr ` `    ``static` `void` `permuteRec(String str, ``int` `n, ` `                           ``int` `index, String curr) ` `    ``{ ` `        ``// base case ` `        ``if` `(index == n) { ` `            ``return``; ` `        ``} ` `        ``Console.WriteLine(curr); ` `        ``for` `(``int` `i = index + 1; i < n; i++) { ` ` `  `            ``curr += str[i]; ` `            ``permuteRec(str, n, i, curr); ` ` `  `            ``// backtracking ` `            ``curr = curr.Substring(0, curr.Length - 1); ` `        ``} ` `        ``return``; ` `    ``} ` ` `  `    ``// Generates power set in lexicographic ` `    ``// order. ` `    ``static` `void` `powerSet(String str) ` `    ``{ ` `        ``char``[] arr = str.ToCharArray(); ` `        ``Array.Sort(arr); ` `        ``permuteRec(``new` `String(arr), str.Length, -1, ``""``); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main(String[] args) ` `    ``{ ` `        ``String str = ``"cab"``; ` `        ``powerSet(str); ` `    ``} ` `} ` ` `  `// This code contributed by Rajput-Ji `

## PHP

 ` `

Output :

```a
ab
abc
ac
b
bc
c
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.