Possible to make a divisible by 3 number using all digits in an array
Given an array of integers, the task is to find whether it’s possible to construct an integer using all the digits of these numbers such that it would be divisible by 3. If it is possible then print “Yes” and if not print “No”.
Examples:
Input : arr[] = {40, 50, 90} Output : Yes We can construct a number which is divisible by 3, for example 945000. So the answer is Yes. Input : arr[] = {1, 4} Output : No The only possible numbers are 14 and 41, but both of them are not divisible by 3, so the answer is No.
The idea is based on the fact that a number is divisible by 3 if the sum of its digits is divisible by 3. So we simply find the sum of array elements. If the sum is divisible by 3, our answer is Yes, else No
Implementation:
CPP
// C++ program to find if it is possible // to make a number divisible by 3 using // all digits of given array #include <bits/stdc++.h> using namespace std; bool isPossibleToMakeDivisible( int arr[], int n) { // Find remainder of sum when divided by 3 int remainder = 0; for ( int i=0; i<n; i++) remainder = (remainder + arr[i]) % 3; // Return true if remainder is 0. return (remainder == 0); } // Driver code int main() { int arr[] = { 40, 50, 90 }; int n = sizeof (arr) / sizeof (arr[0]); if (isPossibleToMakeDivisible(arr, n)) printf ( "Yes\n" ); else printf ( "No\n" ); return 0; } |
Java
// Java program to find if it is possible // to make a number divisible by 3 using // all digits of given array import java.io.*; import java.util.*; class GFG { public static boolean isPossibleToMakeDivisible( int arr[], int n) { // Find remainder of sum when divided by 3 int remainder = 0 ; for ( int i= 0 ; i<n; i++) remainder = (remainder + arr[i]) % 3 ; // Return true if remainder is 0. return (remainder == 0 ); } public static void main (String[] args) { int arr[] = { 40 , 50 , 90 }; int n = 3 ; if (isPossibleToMakeDivisible(arr, n)) System.out.print( "Yes\n" ); else System.out.print( "No\n" ); } } // Code Contributed by Mohit Gupta_OMG <(0_o)> |
Python3
# Python program to find if it is possible # to make a number divisible by 3 using # all digits of given array def isPossibleToMakeDivisible(arr, n): # Find remainder of sum when divided by 3 remainder = 0 for i in range ( 0 , n): remainder = (remainder + arr[i]) % 3 # Return true if remainder is 0. return (remainder = = 0 ) # main() arr = [ 40 , 50 , 90 ]; n = 3 if (isPossibleToMakeDivisible(arr, n)): print ( "Yes" ) else : print ( "No" ) # Code Contributed by Mohit Gupta_OMG <(0_o)> |
C#
// C# program to find if it is possible // to make a number divisible by 3 using // all digits of given array using System; class GFG { public static bool isPossibleToMakeDivisible( int []arr, int n) { // Find remainder of sum when divided by 3 int remainder = 0; for ( int i = 0; i < n; i++) remainder = (remainder + arr[i]) % 3; // Return true if remainder is 0. return (remainder == 0); } public static void Main () { int []arr = { 40, 50, 90 }; int n = 3; if (isPossibleToMakeDivisible(arr, n)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by vt_m |
PHP
<?php // PHP program to find if it is possible // to make a number divisible by 3 using // all digits of given array function isPossibleToMakeDivisible( $arr , $n ) { // Find remainder of sum // when divided by 3 $remainder = 0; for ( $i = 0; $i < $n ; $i ++) $remainder = ( $remainder + $arr [ $i ]) % 3; // Return true if remainder is 0. return ( $remainder == 0); } // Driver code $arr = array ( 40, 50, 90 ); $n = sizeof( $arr ); if (isPossibleToMakeDivisible( $arr , $n )) echo ( "Yes\n" ); else echo ( "No\n" ); // This code is contributed by Ajit. ?> |
Javascript
<script> // javascript program to find if it is possible // to make a number divisible by 3 using // all digits of given array function isPossibleToMakeDivisible(arr , n) { // Find remainder of sum when divided by 3 var remainder = 0; for (i=0; i<n; i++) remainder = (remainder + arr[i]) % 3; // Return true if remainder is 0. return (remainder == 0); } var arr = [ 40, 50, 90 ]; var n = 3; if (isPossibleToMakeDivisible(arr, n)) document.write( "Yes\n" ); else document.write( "No\n" ); // This code contributed by Princi Singh </script> |
Output
Yes
Time Complexity: O(n)
Space Complexity: O(1)
Please Login to comment...