Skip to content
Related Articles

Related Articles

Improve Article

Positive integers up to N that are not present in given Array

  • Difficulty Level : Hard
  • Last Updated : 20 Sep, 2021

Given an array a[] and an integer N, the task is to find all natural numbers from the range [1, N] that are nor present in the given array.

Examples:

Input: N = 5, a[] = {1, 2, 4, 5}
Output: 3
Explanation: 3 is the only integer from the range [1, 5] that is not present in the array.

Input: N = 10, a[] = {1, 3, 4, 6, 8, 10}
Output: 2 5 7 9

Naive Approach: The simplest approach to solve this problem is to traverse the range [1, N] and for each number from range, traverse the array and check if it is present in the array or not. 
Time Complexity: O(N * len), where len denotes the length of the array. 
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized using HashSet. Traverse the given array and insert all array elements into the HashSet. Then, traverse the range [1, N] and for each element, check if it is present in the HashSet or not using contains() method, to compute search in O(1) complexity. 
Time Complexity: O(N) 
Auxiliary Space: O(N)
 



Alternate Approach: The given problem can be solved using BitSet in C++. Follow the steps below to solve the problem:

  1. Initialize a BitSet variable, bset with N as length.
  2. For each array element, set its bit to false, using bset.set(arr[i]-1, 0), where it sets the bit at position arr[i] – 1 to 0.
  3. Now, iterate from bset._Find_first() to bset.size() – 1 using a variable, say i.
  4. Print i + 1 and set bset._Find_next().

 

Below is the implementation of the above approach.

 

C++




// CPP program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find positive integers
// from 1 to N that are not present in the array
void findMissingNumbers(int arr[], int len)
{
    const int M = 15;
 
    // Declare bitset
    bitset<M> bset;
 
    // Iterate from 0 to M - 1
    for (int i = 0; i < M; i++) {
        bset.set(i);
    }
 
    // Iterate from 0 to len - 1
    for (int i = 0; i < len; i++) {
        bset.set(arr[i] - 1, 0);
    }
 
    // Iterate from bset._Find_first()
    // to bset.size() - 1
    for (int i = bset._Find_first();
         i < bset.size();
         i = bset._Find_next(i)) {
 
        if (i + 1 > len)
            break;
 
        cout << i + 1 << endl;
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 4, 6, 8, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    findMissingNumbers(arr, n);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG
{
 
    // Function to find positive integers
    // from 1 to N that are not present in the array
    static void findMissingNumbers(int[] arr, int len)
    {
        int M = 15;
 
        // Declare bitset
        BitSet bset = new BitSet(M);
 
        // Iterate from 0 to M - 1
        for (int i = 0; i < M; i++)
        {
            bset.set(i);
        }
 
        // Iterate from 0 to len - 1
        for (int i = 0; i < len; i++)
        {
            bset.set(arr[i] - 1, false);
        }
 
        // Iterate from bset._Find_first()
        // to bset.size() - 1
        for (int i = bset.nextSetBit(0); i >= 0;
             i = bset.nextSetBit(i + 1))
        {
            if (i + 1 > len)
                break;
            System.out.println(i + 1);
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = new int[] { 1, 2, 4, 6, 8, 9 };
        int n = arr.length;
        findMissingNumbers(arr, n);
    }
}
 
// This code is contributed by Dharanendra L V

Python3




# Python 3 program for the above approach
 
#  Function to find positive integers
# from 1 to N that are not present in the array
def findMissingNumbers(arr, n):
 
    M = 15
 
    # Declare bitset
    bset = [0]*M
 
    # Iterate from 0 to M - 1
    for i in range(M):
        bset[i] = i
 
    # Iterate from 0 to n - 1
    for i in range(n):
        bset[arr[i] - 1] = 0
 
    bset = [i for i in bset if i != 0]
 
    # Iterate from bset._Find_first()
    # to bset.size() - 1
 
    for i in range(len(bset)):
 
        if (bset[i] + 1 > n):
            break
 
        print(bset[i] + 1)
 
# Driver Code
if __name__ == "__main__":
 
    arr = [1, 2, 4, 6, 8, 9]
    n = len(arr)
 
    findMissingNumbers(arr, n)
 
    # This code is contributed by ukasp.

 
 

Output: 
3
5

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :