Related Articles

# Position of Elements which are equal to sum of all Preceding elements

• Last Updated : 04 Jun, 2021

Given an array Arr[] of N of positive integers. The task is to find positions of all the elements which are equal to the sum of all preceding elements. If no such element exists print -1.
Examples:

Input : Arr[] = {1, 2, 3, 6, 3, 15, 5}
Output :3 4 6
Here, the element at index “3” i.e. 3 is equal to the sum of preceding elements (1 + 2).
Similarly, at index 4, 6 = 1+2+3 (sum of all preceding elements).
And element at index 6 i.e. 15 = 1 + 2 + 3 + 6 + 3.
Input: Arr[] = {7, 5, 17, 25}
Output: -1

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach:
While traversing the array Arr[], maintain a sum variable that store the sum of elements till i – 1. Compare the sum with current element Arr[i]. If it is equal, push the index of this element into the answer vector.
Below is the implementation of the above approach:

## C++

 `// C++ implementation``#include ``using` `namespace` `std;` `// function to return valid indexes``vector<``int``> find_idx(``int` `ar[], ``int` `n)``{` `    ``// Vector to store the answer``    ``vector<``int``> answer;` `    ``// Initial sum would always``    ``// be first element``    ``int` `sum = ar;` `    ``for` `(``int` `i = 1; i < n; i++) {` `        ``// Check if sum till now``        ``// is equal to current element``        ``if` `(sum == ar[i]) {``            ``answer.push_back(i + 1);``        ``}` `        ``// Updating the sum by``        ``// adding the current``        ``// element in each``        ``// iteration.``        ``sum += ar[i];``    ``}` `    ``return` `answer;``}` `// Driver code``int` `main()``{``    ``int` `ar[] = { 1, 2, 3, 6, 3, 15, 5 };``    ``int` `n = ``sizeof``(ar) / ``sizeof``(``int``);` `    ``vector<``int``> ans = find_idx(ar, n);` `    ``if` `(ans.size() != 0) {``        ``for` `(``int` `i : ans) {``            ``cout << i << ``" "``;``        ``}``    ``}``    ``else` `{``        ``cout << ``"-1"``;``    ``}` `    ``cout << endl;` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `GFG``{``    ` `// function to return valid indexes``static` `Vector find_idx(``int` `ar[], ``int` `n)``{` `    ``// Vector to store the answer``    ``Vector answer = ``new` `Vector();` `    ``// Initial sum would always``    ``// be first element``    ``int` `sum = ar[``0``];` `    ``for` `(``int` `i = ``1``; i < n; i++)``    ``{` `        ``// Check if sum till now``        ``// is equal to current element``        ``if` `(sum == ar[i])``        ``{``            ``answer.add(i + ``1``);``        ``}` `        ``// Updating the sum by adding the``        ``// current element in each iteration.``        ``sum += ar[i];``    ``}``    ``return` `answer;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `ar[] = { ``1``, ``2``, ``3``, ``6``, ``3``, ``15``, ``5` `};``    ``int` `n = ar.length;` `    ``Vector ans = find_idx(ar, n);` `    ``if` `(ans.size() != ``0``)``    ``{``        ``for` `(``int` `i : ans)``        ``{``            ``System.out.print(i + ``" "``);``        ``}``    ``}``    ``else``    ``{``        ``System.out.println(``"-1"``);``    ``}``}``}` `// This code is contributed by 29AjayKumar`

## Python3

 `# Python3 implementation of the above approach` `# function to return valid indexes``def` `find_idx(ar, n) :` `    ``# Vector to store the answer``    ``answer ``=` `[];` `    ``# Initial sum would always``    ``# be first element``    ``sum` `=` `ar[``0``];` `    ``for` `i ``in` `range``(``1``, n) :` `        ``# Check if sum till now``        ``# is equal to current element``        ``if` `(``sum` `=``=` `ar[i]) :``            ``answer.append(i ``+` `1``);` `        ``# Updating the sum by``        ``# adding the current``        ``# element in each``        ``# iteration.``        ``sum` `+``=` `ar[i];` `    ``return` `answer;` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``ar ``=` `[ ``1``, ``2``, ``3``, ``6``, ``3``, ``15``, ``5` `];``    ``n ``=` `len``(ar);` `    ``ans ``=` `find_idx(ar, n);` `    ``if` `(``len``(ans) !``=` `0``) :``        ` `        ``for` `i ``in` `ans :``            ``print``(i, end ``=` `" "``);``            ` `    ``else` `:``        ` `        ``print``(``"-1"``);` `    ``print``();` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;``using` `System.Collections.Generic;``    ` `class` `GFG``{``    ` `// function to return valid indexes``static` `List<``int``> find_idx(``int` `[]ar, ``int` `n)``{` `    ``// Vector to store the answer``    ``List<``int``> answer = ``new` `List<``int``>();` `    ``// Initial sum would always``    ``// be first element``    ``int` `sum = ar;` `    ``for` `(``int` `i = 1; i < n; i++)``    ``{` `        ``// Check if sum till now``        ``// is equal to current element``        ``if` `(sum == ar[i])``        ``{``            ``answer.Add(i + 1);``        ``}` `        ``// Updating the sum by adding the``        ``// current element in each iteration.``        ``sum += ar[i];``    ``}``    ``return` `answer;``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``    ``int` `[]ar = { 1, 2, 3, 6, 3, 15, 5 };``    ``int` `n = ar.Length;` `    ``List<``int``> ans = find_idx(ar, n);` `    ``if` `(ans.Count != 0)``    ``{``        ``foreach` `(``int` `i ``in` `ans)``        ``{``            ``Console.Write(i + ``" "``);``        ``}``    ``}``    ``else``    ``{``        ``Console.WriteLine(``"-1"``);``    ``}``}``}` `// This code is contributed by Princi Singh`

## Javascript

 ``
Output:
`3 4 6`

My Personal Notes arrow_drop_up