Plotting the Growth Curve of Coronavirus in various Countries using Python

In this article, we will collect latest updated information about the coronavirus cases across the world and in a particular country. We will plot graphs to visualise the growth of total number of cases and the total deaths for the last 20 days. The latest data is fetched from Our World in Data.

Python modules required

  • requests:
    The requests library is used for making HTTP requests in Python.

    pip install requests
  • matplotlib:
    matplotlib is a comprehensive library for creating various types of graphs and interactive visualisations in Python.

    pip install matplotlib


The data scraped from the website(using requests), is converted to the csv-like format. Then this data is filtered to get the required statistics for the last 20 days and the visualizations are plotted(using matplotlib).

Below is the implementation.





from matplotlib import pyplot as plt
import requests
# function to plot data for country 
# and world
def Plot(country):
    # getting request from the url
    req = requests.get(' / data / ecdc / full_data.csv')
    # converting to text and splitting 
    # the rows of the csv data
    cf = req.text.split('\n')
    # converting to 2 dimensional list
    for i in range(len(cf)):
        cf[i]= cf[i].split(', ')  
    dates =[]
    total =[]
    total_w =[]
    deaths =[]
    deaths_w =[]
    l =[]
    f = 0
    for i in range(len(cf)-1):
        l = cf[i]
        c = l[1]
        # filtering data for a particular country
        if c == country:
            f = 1
            # getting the dates, total cases and
            # deaths for the particular country
        # filtering data for the world
        if c =='World':
            # getting total cases and deaths for
            # the world
    if f == 0:
        print("Invalid country name.")
    # Plotting country data
    total_ax = plt.subplot(2, 2, 1)
    total_ax.set_title(country+' (Total Cases)')
    # plotting the curve for total cases
    total_ax.plot(dates[-20:], total[-20:])
    # plotting the bars for total cases[-20:], total[-20:], alpha = 0.5)
    plt.xticks(rotation = 45)
    death_ax = plt.subplot(2, 2, 2)
    death_ax.set_title(country+' (Total Deaths)')
    # plotting the curve for deaths
    death_ax.plot(dates[-20:], deaths[-20:], color ='red')
    # plotting the bars for deaths[-20:], deaths[-20:], color ='red', alpha = 0.5)
    plt.xticks(rotation = 45)
    # Plotting world data
    total_w_ax = plt.subplot(2, 2, 3)
    total_w_ax.set_title('World (Total Cases)')
    # plotting the curve for total cases
    total_w_ax.plot(dates[-20:], total_w[-20:])
    # plotting the bar for total cases[-20:], total_w[-20:], alpha = 0.5)
    plt.xticks(rotation = 45)
    death_w_ax = plt.subplot(2, 2, 4)
    death_w_ax.set_title('World (Total Deaths)')
    # plotting the curve for deaths
    death_w_ax.plot(dates[-20:], deaths_w[-20:], color ='red')
    # plotting the curve for deaths[-20:], deaths_w[-20:], color ='red', alpha = 0.5)
    plt.xticks(rotation = 45)
print("Enter country name...")
country = input().title()


Input :

Enter country name...

Output :

Input :

Enter country name...

Output :

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using or mail your article to See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.