# Plotting Histogram in Python using Matplotlib

• Difficulty Level : Easy
• Last Updated : 29 Jul, 2021

A histogram is basically used to represent data provided in a form of some groups.It is accurate method for the graphical representation of numerical data distribution.It is a type of bar plot where X-axis represents the bin ranges while Y-axis gives information about frequency.

## Creating a Histogram

To create a histogram the first step is to create bin of the ranges, then distribute the whole range of the values into a series of intervals, and count the values which fall into each of the intervals.Bins are clearly identified as consecutive, non-overlapping intervals of variables.The matplotlib.pyplot.hist() function is used to compute and create histogram of x.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

The following table shows the parameters accepted by matplotlib.pyplot.hist() function :

Let’s create a basic histogram of some random values. Below code creates a simple histogram of some random values:

## Python3

 `from` `matplotlib ``import` `pyplot as plt``import` `numpy as np`  `# Creating dataset``a ``=` `np.array([``22``, ``87``, ``5``, ``43``, ``56``,``              ``73``, ``55``, ``54``, ``11``,``              ``20``, ``51``, ``5``, ``79``, ``31``,``              ``27``])` `# Creating histogram``fig, ax ``=` `plt.subplots(figsize ``=``(``10``, ``7``))``ax.hist(a, bins ``=` `[``0``, ``25``, ``50``, ``75``, ``100``])` `# Show plot``plt.show()`

Output :

## Customization of Histogram

Matplotlib provides a range of different methods to customize histogram.
matplotlib.pyplot.hist() function itself provides many attributes with the help of which we can modify a histogram.The hist() function provide a patches object which gives access to the properties of the created objects, using this we can modify the plot according to our will.

Example 1:

## Python3

 `import` `matplotlib.pyplot as plt``import` `numpy as np``from` `matplotlib ``import` `colors``from` `matplotlib.ticker ``import` `PercentFormatter` `# Creating dataset``np.random.seed(``23685752``)``N_points ``=` `10000``n_bins ``=` `20` `# Creating distribution``x ``=` `np.random.randn(N_points)``y ``=` `.``8` `*``*` `x ``+` `np.random.randn(``10000``) ``+` `25` `# Creating histogram``fig, axs ``=` `plt.subplots(``1``, ``1``,``                        ``figsize ``=``(``10``, ``7``),``                        ``tight_layout ``=` `True``)` `axs.hist(x, bins ``=` `n_bins)` `# Show plot``plt.show()`

Output :

Example 2: The code below modifies the above histogram for a better view and accurate readings.

## Python3

 `import` `matplotlib.pyplot as plt``import` `numpy as np``from` `matplotlib ``import` `colors``from` `matplotlib.ticker ``import` `PercentFormatter`  `# Creating dataset``np.random.seed(``23685752``)``N_points ``=` `10000``n_bins ``=` `20` `# Creating distribution``x ``=` `np.random.randn(N_points)``y ``=` `.``8` `*``*` `x ``+` `np.random.randn(``10000``) ``+` `25``legend ``=` `[``'distribution'``]` `# Creating histogram``fig, axs ``=` `plt.subplots(``1``, ``1``,``                        ``figsize ``=``(``10``, ``7``),``                        ``tight_layout ``=` `True``)`  `# Remove axes splines``for` `s ``in` `[``'top'``, ``'bottom'``, ``'left'``, ``'right'``]:``    ``axs.spines[s].set_visible(``False``)` `# Remove x, y ticks``axs.xaxis.set_ticks_position(``'none'``)``axs.yaxis.set_ticks_position(``'none'``)``  ` `# Add padding between axes and labels``axs.xaxis.set_tick_params(pad ``=` `5``)``axs.yaxis.set_tick_params(pad ``=` `10``)` `# Add x, y gridlines``axs.grid(b ``=` `True``, color ``=``'grey'``,``        ``linestyle ``=``'-.'``, linewidth ``=` `0.5``,``        ``alpha ``=` `0.6``)` `# Add Text watermark``fig.text(``0.9``, ``0.15``, ``'Jeeteshgavande30'``,``         ``fontsize ``=` `12``,``         ``color ``=``'red'``,``         ``ha ``=``'right'``,``         ``va ``=``'bottom'``,``         ``alpha ``=` `0.7``)` `# Creating histogram``N, bins, patches ``=` `axs.hist(x, bins ``=` `n_bins)` `# Setting color``fracs ``=` `((N``*``*``(``1` `/` `5``)) ``/` `N.``max``())``norm ``=` `colors.Normalize(fracs.``min``(), fracs.``max``())` `for` `thisfrac, thispatch ``in` `zip``(fracs, patches):``    ``color ``=` `plt.cm.viridis(norm(thisfrac))``    ``thispatch.set_facecolor(color)` `# Adding extra features   ``plt.xlabel(``"X-axis"``)``plt.ylabel(``"y-axis"``)``plt.legend(legend)``plt.title(``'Customized histogram'``)` `# Show plot``plt.show()`

Output :

My Personal Notes arrow_drop_up