Playfair Cipher with Examples
The Playfair cipher was the first practical digraph substitution cipher. The scheme was invented in 1854 by Charles Wheatstone but was named after Lord Playfair who promoted the use of the cipher. In playfair cipher unlike traditional cipher we encrypt a pair of alphabets(digraphs) instead of a single alphabet.
It was used for tactical purposes by British forces in the Second Boer War and in World War I and for the same purpose by the Australians during World War II. This was because Playfair is reasonably fast to use and requires no special equipment.
For the encryption process let us consider the following example:
The Playfair Cipher Encryption Algorithm:
The Algorithm consists of 2 steps:
- Generate the key Square(5×5):
- The key square is a 5×5 grid of alphabets that acts as the key for encrypting the plaintext. Each of the 25 alphabets must be unique and one letter of the alphabet (usually J) is omitted from the table (as the table can hold only 25 alphabets). If the plaintext contains J, then it is replaced by I.
- The initial alphabets in the key square are the unique alphabets of the key in the order in which they appear followed by the remaining letters of the alphabet in order.
- The key square is a 5×5 grid of alphabets that acts as the key for encrypting the plaintext. Each of the 25 alphabets must be unique and one letter of the alphabet (usually J) is omitted from the table (as the table can hold only 25 alphabets). If the plaintext contains J, then it is replaced by I.
- Algorithm to encrypt the plain text: The plaintext is split into pairs of two letters (digraphs). If there is an odd number of letters, a Z is added to the last letter.
For example:
PlainText: "instruments" After Split: 'in' 'st' 'ru' 'me' 'nt' 'sz'
1. Pair cannot be made with same letter. Break the letter in single and add a bogus letter to the previous letter.
Plain Text: “hello”
After Split: ‘he’ ‘lx’ ‘lo’
Here ‘x’ is the bogus letter.
2. If the letter is standing alone in the process of pairing, then add an extra bogus letter with the alone letter
Plain Text: “helloe”
AfterSplit: ‘he’ ‘lx’ ‘lo’ ‘ez’
Here ‘z’ is the bogus letter.
Rules for Encryption:
- If both the letters are in the same column: Take the letter below each one (going back to the top if at the bottom).
For example:
Diagraph: "me" Encrypted Text: cl Encryption: m -> c e -> l
- If both the letters are in the same row: Take the letter to the right of each one (going back to the leftmost if at the rightmost position).
For example:
Diagraph: "st" Encrypted Text: tl Encryption: s -> t t -> l
- If neither of the above rules is true: Form a rectangle with the two letters and take the letters on the horizontal opposite corner of the rectangle.
For example:
Diagraph: "nt" Encrypted Text: rq Encryption: n -> r t -> q
For example:
Plain Text: "instrumentsz" Encrypted Text: gatlmzclrqtx Encryption: i -> g n -> a s -> t t -> l r -> m u -> z m -> c e -> l n -> r t -> q s -> t z -> x
Below is an implementation of Playfair Cipher in C:
C++
// C++ program to implement Playfair Cipher #include <bits/stdc++.h> using namespace std; #define SIZE 30 // Function to convert the string to lowercase void toLowerCase( char plain[], int ps) { int i; for (i = 0; i < ps; i++) { if (plain[i] > 64 && plain[i] < 91) plain[i] += 32; } } // Function to remove all spaces in a string int removeSpaces( char * plain, int ps) { int i, count = 0; for (i = 0; i < ps; i++) if (plain[i] != ' ' ) plain[count++] = plain[i]; plain[count] = '\0' ; return count; } // Function to generate the 5x5 key square void generateKeyTable( char key[], int ks, char keyT[5][5]) { int i, j, k, flag = 0; // a 26 character hashmap // to store count of the alphabet int dicty[26] = { 0 }; for (i = 0; i < ks; i++) { if (key[i] != 'j' ) dicty[key[i] - 97] = 2; } dicty[ 'j' - 97] = 1; i = 0; j = 0; for (k = 0; k < ks; k++) { if (dicty[key[k] - 97] == 2) { dicty[key[k] - 97] -= 1; keyT[i][j] = key[k]; j++; if (j == 5) { i++; j = 0; } } } for (k = 0; k < 26; k++) { if (dicty[k] == 0) { keyT[i][j] = ( char )(k + 97); j++; if (j == 5) { i++; j = 0; } } } } // Function to search for the characters of a digraph // in the key square and return their position void search( char keyT[5][5], char a, char b, int arr[]) { int i, j; if (a == 'j' ) a = 'i' ; else if (b == 'j' ) b = 'i' ; for (i = 0; i < 5; i++) { for (j = 0; j < 5; j++) { if (keyT[i][j] == a) { arr[0] = i; arr[1] = j; } else if (keyT[i][j] == b) { arr[2] = i; arr[3] = j; } } } } // Function to find the modulus with 5 int mod5( int a) { return (a % 5); } // Function to make the plain text length to be even int prepare( char str[], int ptrs) { if (ptrs % 2 != 0) { str[ptrs++] = 'z' ; str[ptrs] = '\0' ; } return ptrs; } // Function for performing the encryption void encrypt( char str[], char keyT[5][5], int ps) { int i, a[4]; for (i = 0; i < ps; i += 2) { search(keyT, str[i], str[i + 1], a); if (a[0] == a[2]) { str[i] = keyT[a[0]][mod5(a[1] + 1)]; str[i + 1] = keyT[a[0]][mod5(a[3] + 1)]; } else if (a[1] == a[3]) { str[i] = keyT[mod5(a[0] + 1)][a[1]]; str[i + 1] = keyT[mod5(a[2] + 1)][a[1]]; } else { str[i] = keyT[a[0]][a[3]]; str[i + 1] = keyT[a[2]][a[1]]; } } } // Function to encrypt using Playfair Cipher void encryptByPlayfairCipher( char str[], char key[]) { char ps, ks, keyT[5][5]; // Key ks = strlen (key); ks = removeSpaces(key, ks); toLowerCase(key, ks); // Plaintext ps = strlen (str); toLowerCase(str, ps); ps = removeSpaces(str, ps); ps = prepare(str, ps); generateKeyTable(key, ks, keyT); encrypt(str, keyT, ps); } // Driver code int main() { char str[SIZE], key[SIZE]; // Key to be encrypted strcpy (key, "Monarchy" ); cout << "Key text: " << key << "\n" ; // Plaintext to be encrypted strcpy (str, "instruments" ); cout << "Plain text: " << str << "\n" ; // encrypt using Playfair Cipher encryptByPlayfairCipher(str, key); cout << "Cipher text: " << str << "\n" ; return 0; } // This code is contributed by aditya942003patil |
Java
// Java program to implement Playfair Cipher import java.util.*; public class Solution { static int SIZE = 30 ; // Function to convert the string to lowercase static void toLowerCase( char plain[], int ps) { int i; for (i = 0 ; i < ps; i++) { if (plain[i] > 64 && plain[i] < 91 ) plain[i] += 32 ; } } // Function to remove all spaces in a string static int removeSpaces( char [] plain, int ps) { int i, count = 0 ; for (i = 0 ; i < ps; i++) if (plain[i] != '\u0000' ) plain[count++] = plain[i]; return count; } // Function to generate the 5x5 key square static void generateKeyTable( char key[], int ks, char keyT[][]) { int i, j, k, flag = 0 ; // a 26 character hashmap // to store count of the alphabet int dicty[] = new int [ 26 ]; for (i = 0 ; i < ks; i++) { if (key[i] != 'j' ) dicty[key[i] - 97 ] = 2 ; } dicty[ 'j' - 97 ] = 1 ; i = 0 ; j = 0 ; for (k = 0 ; k < ks; k++) { if (dicty[key[k] - 97 ] == 2 ) { dicty[key[k] - 97 ] -= 1 ; keyT[i][j] = key[k]; j++; if (j == 5 ) { i++; j = 0 ; } } } for (k = 0 ; k < 26 ; k++) { if (dicty[k] == 0 ) { keyT[i][j] = ( char )(k + 97 ); j++; if (j == 5 ) { i++; j = 0 ; } } } } // Function to search for the characters of a digraph // in the key square and return their position static void search( char keyT[][], char a, char b, int arr[]) { int i, j; if (a == 'j' ) a = 'i' ; else if (b == 'j' ) b = 'i' ; for (i = 0 ; i < 5 ; i++) { for (j = 0 ; j < 5 ; j++) { if (keyT[i][j] == a) { arr[ 0 ] = i; arr[ 1 ] = j; } else if (keyT[i][j] == b) { arr[ 2 ] = i; arr[ 3 ] = j; } } } } // Function to find the modulus with 5 static int mod5( int a) { return (a % 5 ); } // Function to make the plain text length to be even static int prepare( char str[], int ptrs) { if (ptrs % 2 != 0 ) { str[ptrs++] = 'z' ; str[ptrs] = '\0' ; } return ptrs; } // Function for performing the encryption static void encrypt( char str[], char keyT[][], int ps) { int i; int [] a = new int [ 4 ]; for (i = 0 ; i < ps; i += 2 ) { search(keyT, str[i], str[i + 1 ], a); if (a[ 0 ] == a[ 2 ]) { str[i] = keyT[a[ 0 ]][mod5(a[ 1 ] + 1 )]; str[i + 1 ] = keyT[a[ 0 ]][mod5(a[ 3 ] + 1 )]; } else if (a[ 1 ] == a[ 3 ]) { str[i] = keyT[mod5(a[ 0 ] + 1 )][a[ 1 ]]; str[i + 1 ] = keyT[mod5(a[ 2 ] + 1 )][a[ 1 ]]; } else { str[i] = keyT[a[ 0 ]][a[ 3 ]]; str[i + 1 ] = keyT[a[ 2 ]][a[ 1 ]]; } } } // Function to encrypt using Playfair Cipher static void encryptByPlayfairCipher( char str[], char key[]) { int ps; int ks; char [][] keyT = new char [ 5 ][ 5 ]; // Key ks = key.length; ks = removeSpaces(key, ks); toLowerCase(key, ks); // Plaintext ps = str.length; toLowerCase(str, ps); ps = removeSpaces(str, ps); ps = prepare(str, ps); generateKeyTable(key, ks, keyT); encrypt(str, keyT, ps); } static void strcpy( char [] arr, String s) { for ( int i = 0 ;i < s.length();i++){ arr[i] = s.charAt(i); } } // Driver code public static void main(String[] args) { char str[] = new char [SIZE]; char key[] = new char [SIZE]; // Key to be encrypted strcpy(key, "Monarchy" ); System.out.println( "Key text: " + String.valueOf(key)); // Plaintext to be encrypted strcpy(str, "instruments" ); System.out.println( "Plain text: " + String.valueOf(str)); // encrypt using Playfair Cipher encryptByPlayfairCipher(str, key); System.out.println( "Cipher text: " + String.valueOf(str)); } } // This code is contributed by karandeep1234 |
C
// C program to implement Playfair Cipher #include <stdio.h> #include <stdlib.h> #include <string.h> #define SIZE 30 // Function to convert the string to lowercase void toLowerCase( char plain[], int ps) { int i; for (i = 0; i < ps; i++) { if (plain[i] > 64 && plain[i] < 91) plain[i] += 32; } } // Function to remove all spaces in a string int removeSpaces( char * plain, int ps) { int i, count = 0; for (i = 0; i < ps; i++) if (plain[i] != ' ' ) plain[count++] = plain[i]; plain[count] = '\0' ; return count; } // Function to generate the 5x5 key square void generateKeyTable( char key[], int ks, char keyT[5][5]) { int i, j, k, flag = 0, *dicty; // a 26 character hashmap // to store count of the alphabet dicty = ( int *) calloc (26, sizeof ( int )); for (i = 0; i < ks; i++) { if (key[i] != 'j' ) dicty[key[i] - 97] = 2; } dicty[ 'j' - 97] = 1; i = 0; j = 0; for (k = 0; k < ks; k++) { if (dicty[key[k] - 97] == 2) { dicty[key[k] - 97] -= 1; keyT[i][j] = key[k]; j++; if (j == 5) { i++; j = 0; } } } for (k = 0; k < 26; k++) { if (dicty[k] == 0) { keyT[i][j] = ( char )(k + 97); j++; if (j == 5) { i++; j = 0; } } } } // Function to search for the characters of a digraph // in the key square and return their position void search( char keyT[5][5], char a, char b, int arr[]) { int i, j; if (a == 'j' ) a = 'i' ; else if (b == 'j' ) b = 'i' ; for (i = 0; i < 5; i++) { for (j = 0; j < 5; j++) { if (keyT[i][j] == a) { arr[0] = i; arr[1] = j; } else if (keyT[i][j] == b) { arr[2] = i; arr[3] = j; } } } } // Function to find the modulus with 5 int mod5( int a) { return (a % 5); } // Function to make the plain text length to be even int prepare( char str[], int ptrs) { if (ptrs % 2 != 0) { str[ptrs++] = 'z' ; str[ptrs] = '\0' ; } return ptrs; } // Function for performing the encryption void encrypt( char str[], char keyT[5][5], int ps) { int i, a[4]; for (i = 0; i < ps; i += 2) { search(keyT, str[i], str[i + 1], a); if (a[0] == a[2]) { str[i] = keyT[a[0]][mod5(a[1] + 1)]; str[i + 1] = keyT[a[0]][mod5(a[3] + 1)]; } else if (a[1] == a[3]) { str[i] = keyT[mod5(a[0] + 1)][a[1]]; str[i + 1] = keyT[mod5(a[2] + 1)][a[1]]; } else { str[i] = keyT[a[0]][a[3]]; str[i + 1] = keyT[a[2]][a[1]]; } } } // Function to encrypt using Playfair Cipher void encryptByPlayfairCipher( char str[], char key[]) { char ps, ks, keyT[5][5]; // Key ks = strlen (key); ks = removeSpaces(key, ks); toLowerCase(key, ks); // Plaintext ps = strlen (str); toLowerCase(str, ps); ps = removeSpaces(str, ps); ps = prepare(str, ps); generateKeyTable(key, ks, keyT); encrypt(str, keyT, ps); } // Driver code int main() { char str[SIZE], key[SIZE]; // Key to be encrypted strcpy (key, "Monarchy" ); printf ( "Key text: %s\n" , key); // Plaintext to be encrypted strcpy (str, "instruments" ); printf ( "Plain text: %s\n" , str); // encrypt using Playfair Cipher encryptByPlayfairCipher(str, key); printf ( "Cipher text: %s\n" , str); return 0; } // This code is contributed by AbhayBhat |
Python3
# Python program to implement Playfair Cipher # Function to convert the string to lowercase def toLowerCase(text): return text.lower() # Function to remove all spaces in a string def removeSpaces(text): newText = "" for i in text: if i = = " " : continue else : newText = newText + i return newText # Function to group 2 elements of a string # as a list element def Diagraph(text): Diagraph = [] group = 0 for i in range ( 2 , len (text), 2 ): Diagraph.append(text[group:i]) group = i Diagraph.append(text[group:]) return Diagraph # Function to fill a letter in a string element # If 2 letters in the same string matches def FillerLetter(text): k = len (text) if k % 2 = = 0 : for i in range ( 0 , k, 2 ): if text[i] = = text[i + 1 ]: new_word = text[ 0 :i + 1 ] + str ( 'x' ) + text[i + 1 :] new_word = FillerLetter(new_word) break else : new_word = text else : for i in range ( 0 , k - 1 , 2 ): if text[i] = = text[i + 1 ]: new_word = text[ 0 :i + 1 ] + str ( 'x' ) + text[i + 1 :] new_word = FillerLetter(new_word) break else : new_word = text return new_word list1 = [ 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' , 'k' , 'l' , 'm' , 'n' , 'o' , 'p' , 'q' , 'r' , 's' , 't' , 'u' , 'v' , 'w' , 'x' , 'y' , 'z' ] # Function to generate the 5x5 key square matrix def generateKeyTable(word, list1): key_letters = [] for i in word: if i not in key_letters: key_letters.append(i) compElements = [] for i in key_letters: if i not in compElements: compElements.append(i) for i in list1: if i not in compElements: compElements.append(i) matrix = [] while compElements ! = []: matrix.append(compElements[: 5 ]) compElements = compElements[ 5 :] return matrix def search(mat, element): for i in range ( 5 ): for j in range ( 5 ): if (mat[i][j] = = element): return i, j def encrypt_RowRule(matr, e1r, e1c, e2r, e2c): char1 = '' if e1c = = 4 : char1 = matr[e1r][ 0 ] else : char1 = matr[e1r][e1c + 1 ] char2 = '' if e2c = = 4 : char2 = matr[e2r][ 0 ] else : char2 = matr[e2r][e2c + 1 ] return char1, char2 def encrypt_ColumnRule(matr, e1r, e1c, e2r, e2c): char1 = '' if e1r = = 4 : char1 = matr[ 0 ][e1c] else : char1 = matr[e1r + 1 ][e1c] char2 = '' if e2r = = 4 : char2 = matr[ 0 ][e2c] else : char2 = matr[e2r + 1 ][e2c] return char1, char2 def encrypt_RectangleRule(matr, e1r, e1c, e2r, e2c): char1 = '' char1 = matr[e1r][e2c] char2 = '' char2 = matr[e2r][e1c] return char1, char2 def encryptByPlayfairCipher(Matrix, plainList): CipherText = [] for i in range ( 0 , len (plainList)): c1 = 0 c2 = 0 ele1_x, ele1_y = search(Matrix, plainList[i][ 0 ]) ele2_x, ele2_y = search(Matrix, plainList[i][ 1 ]) if ele1_x = = ele2_x: c1, c2 = encrypt_RowRule(Matrix, ele1_x, ele1_y, ele2_x, ele2_y) # Get 2 letter cipherText elif ele1_y = = ele2_y: c1, c2 = encrypt_ColumnRule(Matrix, ele1_x, ele1_y, ele2_x, ele2_y) else : c1, c2 = encrypt_RectangleRule( Matrix, ele1_x, ele1_y, ele2_x, ele2_y) cipher = c1 + c2 CipherText.append(cipher) return CipherText text_Plain = 'instruments' text_Plain = removeSpaces(toLowerCase(text_Plain)) PlainTextList = Diagraph(FillerLetter(text_Plain)) if len (PlainTextList[ - 1 ]) ! = 2 : PlainTextList[ - 1 ] = PlainTextList[ - 1 ] + 'z' key = "Monarchy" print ( "Key text:" , key) key = toLowerCase(key) Matrix = generateKeyTable(key, list1) print ( "Plain Text:" , text_Plain) CipherList = encryptByPlayfairCipher(Matrix, PlainTextList) CipherText = "" for i in CipherList: CipherText + = i print ( "CipherText:" , CipherText) # This code is Contributed by Boda_Venkata_Nikith |
Javascript
// JavaScript program to implement Playfair Cipher // Function to generate the 5x5 key square function generateKeyTable(key, ks, keyT) { let i, j, k, flag = 0; // a 26 character hashmap // to store count of the alphabet let dicty = new Array(26).fill(0); for (i = 0; i < ks; i++) { let r = key[i].charCodeAt(0) - 97; if (key[i] != 'j' ) { dicty[r] = 2; } } dicty[ 'j' .charCodeAt(0) - 97] = 1; i = 0; j = 0; for (k = 0; k < ks; k++) { let r = key[k].charCodeAt(0) - 97; if (dicty[r] == 2) { dicty[r] -= 1; keyT[i][j] = key[k]; j++; if (j == 5) { i++; j = 0; } } } for (k = 0; k < 26; k++) { if (dicty[k] == 0) { keyT[i][j] = String.fromCharCode(k + 97); j++; if (j == 5) { i++; j = 0; } } } return keyT; } // Function to search for the characters of a digraph // in the key square and return their position function search(keyT, a, b, arr) { let i, j; if (a == 'j' ) a = 'i' ; else if (b == 'j' ) b = 'i' ; for (i = 0; i < 5; i++) { for (j = 0; j < 5; j++) { if (keyT[i][j] == a) { arr[0] = i; arr[1] = j; } else if (keyT[i][j] == b) { arr[2] = i; arr[3] = j; } } } return arr; } // Function to find the modulus with 5 function mod5(a) { return (a % 5); } // Function to make the plain text length to be even function prepare(str, ptrs) { if (ptrs % 2 != 0) { str += 'z' ; } return [str, ptrs]; } // Function for performing the encryption function encrypt(str, keyT, ps) { let i; let a = new Array(4).fill(0); let newstr = new Array(ps); for (i = 0; i < ps; i += 2) { let brr = search(keyT, str[i], str[i + 1], a); let k1 = brr[0]; let k2 = brr[1]; let k3 = brr[2]; let k4 = brr[3]; if (k1 == k3) { newstr[i] = keyT[k1][(k2 + 1) % 5]; newstr[i + 1] = keyT[k1][(k4 + 1) % 5]; } else if (k2 == k4) { newstr[i] = keyT[(k1 + 1) % 5][k2]; newstr[i + 1] = keyT[(k3 + 1) % 5][k2]; } else { newstr[i] = keyT[k1][k4]; newstr[i + 1] = keyT[k3][k2]; } } let res = "" ; for (let i = 0; i < newstr.length; i++) { res += newstr[i]; } return res; } // Function to encrypt using Playfair Cipher function encryptByPlayfairCipher(str, key) { let ps, ks; let keyT = new Array(5); for (let i = 0; i < 5; i++) { keyT[i] = new Array(5); } str = str.trim(); key = key.trim(); str = str.toLowerCase(); key = key.toLowerCase(); ps = str.length; ks = key.length; [str, ps] = prepare(str, ps); let kt = generateKeyTable(key, ks, keyT); return encrypt(str, kt, ps); } // Driver code let key = " Monarchy" ; let str = " instruments" ; // Key to be encrypted console.log( "Key text: " + key + "<br>" ); console.log( "Plain text: " + str + "<br>" ); // encrypt using Playfair Cipher console.log( "Cipher text: " + encryptByPlayfairCipher(str, key)); // This code is contributed by poojaagarwal2 |
Key text: Monarchy Plain text: instruments Cipher text: gatlmzclrqtx
Decrypting the Playfair cipher is as simple as doing the same process in reverse. The receiver has the same key and can create the same key table, and then decrypt any messages made using that key.
The Playfair Cipher Decryption Algorithm:
The Algorithm consists of 2 steps:
- Generate the key Square(5×5) at the receiver’s end:
- The key square is a 5×5 grid of alphabets that acts as the key for encrypting the plaintext. Each of the 25 alphabets must be unique and one letter of the alphabet (usually J) is omitted from the table (as the table can hold only 25 alphabets). If the plaintext contains J, then it is replaced by I.
- The initial alphabets in the key square are the unique alphabets of the key in the order in which they appear followed by the remaining letters of the alphabet in order.
- The key square is a 5×5 grid of alphabets that acts as the key for encrypting the plaintext. Each of the 25 alphabets must be unique and one letter of the alphabet (usually J) is omitted from the table (as the table can hold only 25 alphabets). If the plaintext contains J, then it is replaced by I.
- Algorithm to decrypt the ciphertext: The ciphertext is split into pairs of two letters (digraphs).
Note: The ciphertext always have even number of characters.
- For example:
CipherText: "gatlmzclrqtx" After Split: 'ga' 'tl' 'mz' 'cl' 'rq' 'tx'
- Rules for Decryption:
- If both the letters are in the same column: Take the letter above each one (going back to the bottom if at the top).
For example:
- If both the letters are in the same column: Take the letter above each one (going back to the bottom if at the top).
Diagraph: "cl" Decrypted Text: me Decryption: c -> m l -> e
- If both the letters are in the same row: Take the letter to the left of each one (going back to the rightmost if at the leftmost position).
For example:
Diagraph: "tl" Decrypted Text: st Decryption: t -> s l -> t
- If neither of the above rules is true: Form a rectangle with the two letters and take the letters on the horizontal opposite corner of the rectangle.
For example:
Diagraph: "rq" Decrypted Text: nt Decryption: r -> n q -> t
For example:
Plain Text: "gatlmzclrqtx" Decrypted Text: instrumentsz Decryption: (red)-> (green) ga -> in tl -> st mz -> ru cl -> me rq -> nt tx -> sz
Below is an implementation of Playfair Cipher Decryption in C:
C++
#include <bits/stdc++.h> using namespace std; #define SIZE 30 // Convert all the characters // of a string to lowercase void toLowerCase( char plain[], int ps) { int i; for (i = 0; i < ps; i++) { if (plain[i] > 64 && plain[i] < 91) plain[i] += 32; } } // Remove all spaces in a string // can be extended to remove punctuation int removeSpaces( char * plain, int ps) { int i, count = 0; for (i = 0; i < ps; i++) if (plain[i] != ' ' ) plain[count++] = plain[i]; plain[count] = '\0' ; return count; } // generates the 5x5 key square void generateKeyTable( char key[], int ks, char keyT[5][5]) { int i, j, k, flag = 0, *dicty; // a 26 character hashmap // to store count of the alphabet dicty = ( int *) calloc (26, sizeof ( int )); for (i = 0; i < ks; i++) { if (key[i] != 'j' ) dicty[key[i] - 97] = 2; } dicty[ 'j' - 97] = 1; i = 0; j = 0; for (k = 0; k < ks; k++) { if (dicty[key[k] - 97] == 2) { dicty[key[k] - 97] -= 1; keyT[i][j] = key[k]; j++; if (j == 5) { i++; j = 0; } } } for (k = 0; k < 26; k++) { if (dicty[k] == 0) { keyT[i][j] = ( char )(k + 97); j++; if (j == 5) { i++; j = 0; } } } } // Search for the characters of a digraph // in the key square and return their position void search( char keyT[5][5], char a, char b, int arr[]) { int i, j; if (a == 'j' ) a = 'i' ; else if (b == 'j' ) b = 'i' ; for (i = 0; i < 5; i++) { for (j = 0; j < 5; j++) { if (keyT[i][j] == a) { arr[0] = i; arr[1] = j; } else if (keyT[i][j] == b) { arr[2] = i; arr[3] = j; } } } } // Function to find the modulus with 5 int mod5( int a) { if (a < 0) a += 5; return (a % 5); } // Function to decrypt void decrypt( char str[], char keyT[5][5], int ps) { int i, a[4]; for (i = 0; i < ps; i += 2) { search(keyT, str[i], str[i + 1], a); if (a[0] == a[2]) { str[i] = keyT[a[0]][mod5(a[1] - 1)]; str[i + 1] = keyT[a[0]][mod5(a[3] - 1)]; } else if (a[1] == a[3]) { str[i] = keyT[mod5(a[0] - 1)][a[1]]; str[i + 1] = keyT[mod5(a[2] - 1)][a[1]]; } else { str[i] = keyT[a[0]][a[3]]; str[i + 1] = keyT[a[2]][a[1]]; } } } // Function to call decrypt void decryptByPlayfairCipher( char str[], char key[]) { char ps, ks, keyT[5][5]; // Key ks = strlen (key); ks = removeSpaces(key, ks); toLowerCase(key, ks); // ciphertext ps = strlen (str); toLowerCase(str, ps); ps = removeSpaces(str, ps); generateKeyTable(key, ks, keyT); decrypt(str, keyT, ps); } // Driver code int main() { char str[SIZE], key[SIZE]; // Key to be encrypted strcpy (key, "Monarchy" ); cout << "Key Text: " << key << endl; // Ciphertext to be decrypted strcpy (str, "gatlmzclrqtx" ); cout << "Plain text: " << str << endl; // encrypt using Playfair Cipher decryptByPlayfairCipher(str, key); cout << "Deciphered text: " << str << endl; return 0; } // This code is contributed by YASH // AGARWAL(YASHAGARWAL2852002) |
C
#include <stdio.h> #include <stdlib.h> #include <string.h> #define SIZE 30 // Convert all the characters // of a string to lowercase void toLowerCase( char plain[], int ps) { int i; for (i = 0; i < ps; i++) { if (plain[i] > 64 && plain[i] < 91) plain[i] += 32; } } // Remove all spaces in a string // can be extended to remove punctuation int removeSpaces( char * plain, int ps) { int i, count = 0; for (i = 0; i < ps; i++) if (plain[i] != ' ' ) plain[count++] = plain[i]; plain[count] = '\0' ; return count; } // generates the 5x5 key square void generateKeyTable( char key[], int ks, char keyT[5][5]) { int i, j, k, flag = 0, *dicty; // a 26 character hashmap // to store count of the alphabet dicty = ( int *) calloc (26, sizeof ( int )); for (i = 0; i < ks; i++) { if (key[i] != 'j' ) dicty[key[i] - 97] = 2; } dicty[ 'j' - 97] = 1; i = 0; j = 0; for (k = 0; k < ks; k++) { if (dicty[key[k] - 97] == 2) { dicty[key[k] - 97] -= 1; keyT[i][j] = key[k]; j++; if (j == 5) { i++; j = 0; } } } for (k = 0; k < 26; k++) { if (dicty[k] == 0) { keyT[i][j] = ( char )(k + 97); j++; if (j == 5) { i++; j = 0; } } } } // Search for the characters of a digraph // in the key square and return their position void search( char keyT[5][5], char a, char b, int arr[]) { int i, j; if (a == 'j' ) a = 'i' ; else if (b == 'j' ) b = 'i' ; for (i = 0; i < 5; i++) { for (j = 0; j < 5; j++) { if (keyT[i][j] == a) { arr[0] = i; arr[1] = j; } else if (keyT[i][j] == b) { arr[2] = i; arr[3] = j; } } } } // Function to find the modulus with 5 int mod5( int a) { if (a < 0) a += 5; return (a % 5); } // Function to decrypt void decrypt( char str[], char keyT[5][5], int ps) { int i, a[4]; for (i = 0; i < ps; i += 2) { search(keyT, str[i], str[i + 1], a); if (a[0] == a[2]) { str[i] = keyT[a[0]][mod5(a[1] - 1)]; str[i + 1] = keyT[a[0]][mod5(a[3] - 1)]; } else if (a[1] == a[3]) { str[i] = keyT[mod5(a[0] - 1)][a[1]]; str[i + 1] = keyT[mod5(a[2] - 1)][a[1]]; } else { str[i] = keyT[a[0]][a[3]]; str[i + 1] = keyT[a[2]][a[1]]; } } } // Function to call decrypt void decryptByPlayfairCipher( char str[], char key[]) { char ps, ks, keyT[5][5]; // Key ks = strlen (key); ks = removeSpaces(key, ks); toLowerCase(key, ks); // ciphertext ps = strlen (str); toLowerCase(str, ps); ps = removeSpaces(str, ps); generateKeyTable(key, ks, keyT); decrypt(str, keyT, ps); } // Driver code int main() { char str[SIZE], key[SIZE]; // Key to be encrypted strcpy (key, "Monarchy" ); printf ( "Key text: %s\n" , key); // Ciphertext to be decrypted strcpy (str, "gatlmzclrqtx" ); printf ( "Plain text: %s\n" , str); // encrypt using Playfair Cipher decryptByPlayfairCipher(str, key); printf ( "Deciphered text: %s\n" , str); return 0; } // This code is contributed by AbhayBhat |
Python3
def toLowerCase(plain): # Convert all the characters of a string to lowercase return plain.lower() def removeSpaces(plain): # Remove all spaces in a string # can be extended to remove punctuation return ''.join(plain.split()) def generateKeyTable(key): # generates the 5x5 key square keyT = [['' for i in range ( 5 )] for j in range ( 5 )] dicty = { chr (i + 97 ): 0 for i in range ( 26 )} for i in range ( len (key)): if key[i] ! = 'j' : dicty[key[i]] = 2 dicty[ 'j' ] = 1 i, j, k = 0 , 0 , 0 while k < len (key): if dicty[key[k]] = = 2 : dicty[key[k]] - = 1 keyT[i][j] = key[k] j + = 1 if j = = 5 : i + = 1 j = 0 k + = 1 for k in dicty.keys(): if dicty[k] = = 0 : keyT[i][j] = k j + = 1 if j = = 5 : i + = 1 j = 0 return keyT def search(keyT, a, b): # Search for the characters of a digraph in the key square and return their position arr = [ 0 , 0 , 0 , 0 ] if a = = 'j' : a = 'i' elif b = = 'j' : b = 'i' for i in range ( 5 ): for j in range ( 5 ): if keyT[i][j] = = a: arr[ 0 ], arr[ 1 ] = i, j elif keyT[i][j] = = b: arr[ 2 ], arr[ 3 ] = i, j return arr def mod5(a): # Function to find the modulus with 5 if a < 0 : a + = 5 return a % 5 def decrypt( str , keyT): # Function to decrypt ps = len ( str ) i = 0 while i < ps: a = search(keyT, str [i], str [i + 1 ]) if a[ 0 ] = = a[ 2 ]: str = str [:i] + keyT[a[ 0 ] ][mod5(a[ 1 ] - 1 )] + keyT[a[ 0 ]][mod5(a[ 3 ] - 1 )] + str [i + 2 :] elif a[ 1 ] = = a[ 3 ]: str = str [:i] + keyT[mod5(a[ 0 ] - 1 )][a[ 1 ]] + \ keyT[mod5(a[ 2 ] - 1 )][a[ 1 ]] + str [i + 2 :] else : str = str [:i] + keyT[a[ 0 ]][a[ 3 ]] + keyT[a[ 2 ]][a[ 1 ]] + str [i + 2 :] i + = 2 return str def decryptByPlayfairCipher( str , key): # Function to call decrypt ks = len (key) key = removeSpaces(toLowerCase(key)) str = removeSpaces(toLowerCase( str )) keyT = generateKeyTable(key) return decrypt( str , keyT) if __name__ = = '__main__' : str = "gatlmzclrqtx" key = "Monarchy" # Key to be encrypted print ( "Key text: " , key) # Ciphertext to be decrypted print ( "Plain text: " , str ) # encrypt using Playfair Cipher decryptByPlayfairCipher( str , key) # Decrypted text print ( "Deciphered text: " , str ) # Pyhton Code Written By Kushal Prajapati |
Javascript
function toLowerCase(plain) { // Convert all the characters of a string to lowercase return plain.toLowerCase(); } function removeSpaces(plain) { // Remove all spaces in a string // can be extended to remove punctuation return plain.split( ' ' ).join( '' ); } function generateKeyTable(key) { // generates the 5x5 key square var keyT = new Array(5).fill( null ).map(() => new Array(5).fill( '' )); var dicty = {}; for ( var i = 0; i < 26; i++) { dicty[String.fromCharCode(i + 97)] = 0; } for ( var i = 0; i < key.length; i++) { if (key[i] != 'j' ) { dicty[key[i]] = 2; } } dicty[ 'j' ] = 1; var i = 0, j = 0, k = 0; while (k < key.length) { if (dicty[key[k]] == 2) { dicty[key[k]] -= 1; keyT[i][j] = key[k]; j += 1; if (j == 5) { i += 1; j = 0; } } k += 1; } for ( var k in dicty) { if (dicty[k] == 0) { keyT[i][j] = k; j += 1; if (j == 5) { i += 1; j = 0; } } } return keyT; } function search(keyT, a, b) { // Search for the characters of a digraph in the key square and return their position var arr = [0, 0, 0, 0]; if (a == 'j' ) { a = 'i' ; } else if (b == 'j' ) { b = 'i' ; } for ( var i = 0; i < 5; i++) { for ( var j = 0; j < 5; j++) { if (keyT[i][j] == a) { arr[0] = i; arr[1] = j; } else if (keyT[i][j] == b) { arr[2] = i; arr[3] = j; } } } return arr; } function mod5(a) { // Function to find the modulus with 5 if (a < 0) { a += 5; } return a % 5; } function decrypt(str, keyT) { // Function to decrypt var ps = str.length; var i = 0; while (i < ps) { var a = search(keyT, str[i], str[i + 1]); if (a[0] == a[2]) { str = str.slice(0, i) + keyT[a[0]][mod5(a[1] - 1)] + keyT[a[0]][mod5(a[3] - 1)] + str.slice(i + 2); } else if (a[1] == a[3]) { str = str.slice(0, i) + keyT[mod5(a[0] - 1)][a[1]] + keyT[mod5(a[2] - 1)][a[1]] + str.slice(i + 2); } else { str = str.slice(0, i) + keyT[a[0]][a[3]] + keyT[a[2]][a[1]] + str.slice(i + 2); } i += 2; } return str; } function decryptByPlayfairCipher(str, key) { // Function to call decrypt var ks = key.length; key = removeSpaces(toLowerCase(key)); str = removeSpaces(toLowerCase(str)); var keyT = generateKeyTable(key); return decrypt(str, keyT); } // Example usage var str = "gatlmzclrqtx" ; var key = "Monarchy" ; // Key to be decrypted console.log( "Key text:" , key); // Ciphertext to be decrypted console.log( "Plain text:" , str); // decrypt using Playfair Cipher var plainText = decryptByPlayfairCipher(str, key); // Decrypted text console.log( "Deciphered text:" , plainText); |
Key text: Monarchy Plain text: gatlmzclrqtx Deciphered text: instrumentsz
- Advantages:
- It is significantly harder to break since the frequency analysis technique used to break simple substitution ciphers is difficult but still can be used on (25*25) = 625 digraphs rather than 25 monographs which is difficult.
- Frequency analysis thus requires more cipher text to crack the encryption.
- It is significantly harder to break since the frequency analysis technique used to break simple substitution ciphers is difficult but still can be used on (25*25) = 625 digraphs rather than 25 monographs which is difficult.
- Disadvantages:
- An interesting weakness is the fact that a digraph in the ciphertext (AB) and it’s reverse (BA) will have corresponding plaintexts like UR and RU (and also ciphertext UR and RU will correspond to plaintext AB and BA, i.e. the substitution is self-inverse). That can easily be exploited with the aid of frequency analysis, if the language of the plaintext is known.
- Another disadvantage is that playfair cipher is a symmetric cipher thus same key is used for both encryption and decryption.
- An interesting weakness is the fact that a digraph in the ciphertext (AB) and it’s reverse (BA) will have corresponding plaintexts like UR and RU (and also ciphertext UR and RU will correspond to plaintext AB and BA, i.e. the substitution is self-inverse). That can easily be exploited with the aid of frequency analysis, if the language of the plaintext is known.
Please Login to comment...