Skip to content

# Permutation present at the middle of lexicographic ordering of permutations of at most length N made up integers up to K

• Last Updated : 05 Nov, 2021

Given two positive integers K and N, the task is to find the permutation present at the middle of all permutations of at most length N, consisting of integers from the range [1, K], arranged lexicographically.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: K = 3, N = 2
Output: 2 1
Explanation: Lexicographical order of all possible permutations are:

1. {1}.
2. {1, 1}
3. {1, 2}
4. {1, 3}
5. {2}
6. {2, 1}
7. {2, 2}
8. {2, 3}
9. {3}
10. {3, 1}
11. {3, 2}
12. {3, 3}

Therefore, the middle lexicographically the smallest sequence is (N/2)th(= 6th) sequence, which is {2, 1}.

Input: K = 2, N = 4
Output: 1 2 2 2

Naive Approach: The simplest approach to solve the given problem is to generate all possible subsequences of a length [1, N], consisting of integers from [1, K]. Store these elements in an array. After generating all the subsequences, sort the stored list of subsequences and print the middle element of the list.

Time Complexity: O(NK)
Auxiliary Space: O(NK)

Efficient Approach: The above approach can be optimized by checking the parity of K whether K is odd or even and then find the middle lexicographically the smallest sequence accordingly. Follow the steps below to solve the problem:

• If the value of K is even, then exactly half of the sequences start with an integer K/2 or less. Therefore, the resultant sequence is K/2 followed by (N – 1) occurrence of K.
• If the value K is odd, then consider B to be a sequence that contains N occurrences of (K + 1)/2.
• For a sequence X, let f(X) be a sequence such that Xi in X is replaced with (K + 1 − Xi).
• The only exception happens for prefixes of B.
• Start with the sequence B, and perform the following steps (N – 1)/2 times:
• If the last element of the current sequence is 1, then remove it.
• Otherwise, decrement the last element by 1, and while the sequence contains less than N elements, and insert K at the end of sequence B.
• After completing the above steps, print the sequence obtained in the array B[].

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ``using` `namespace` `std;` `// Function that finds the middle the``// lexicographical smallest sequence``void` `lexiMiddleSmallest(``int` `K, ``int` `N)``{``    ``// If K is even``    ``if` `(K % 2 == 0) {` `        ``// First element is K/2``        ``cout << K / 2 << ``" "``;` `        ``// Remaining elements of the``        ``// sequence are all integer K``        ``for` `(``int` `i = 0; i < N - 1; ++i) {``            ``cout << K << ``" "``;``        ``}``        ``cout << ``"\n"``;``        ``exit``(0);``    ``}` `    ``// Stores the sequence when K``    ``// is odd``    ``vector<``int``> a(N, (K + 1) / 2);` `    ``// Iterate over the range [0, N/2]``    ``for` `(``int` `i = 0; i < N / 2; ++i) {` `        ``// Check if the sequence ends``        ``// with in 1 or not``        ``if` `(a.back() == 1) {` `            ``// Remove the sequence``            ``// ending in 1``            ``a.pop_back();``        ``}` `        ``// If it doesn't end in 1``        ``else` `{` `            ``// Decrement by 1``            ``--a.back();` `            ``// Insert K to the sequence``            ``// till its size is N``            ``while` `((``int``)a.size() < N) {``                ``a.push_back(K);``            ``}``        ``}``    ``}` `    ``// Print the sequence stored``    ``// in the vector``    ``for` `(``auto` `i : a) {``        ``cout << i << ``" "``;``    ``}``    ``cout << ``"\n"``;``}` `// Driver Code``int` `main()``{``    ``int` `K = 2, N = 4;``    ``lexiMiddleSmallest(K, N);` `    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.io.*;``import` `java.util.*;` `class` `GFG {` `    ``// Function that finds the middle the``    ``// lexicographical smallest sequence``    ``static` `void` `lexiMiddleSmallest(``int` `K, ``int` `N)``    ``{``      ` `        ``// If K is even``        ``if` `(K % ``2` `== ``0``) {` `            ``// First element is K/2``            ``System.out.print(K / ``2` `+ ``" "``);` `            ``// Remaining elements of the``            ``// sequence are all integer K``            ``for` `(``int` `i = ``0``; i < N - ``1``; ++i) {``                ``System.out.print(K + ``" "``);``            ``}``            ``System.out.println();``            ``return``;``        ``}` `        ``// Stores the sequence when K``        ``// is odd``        ``ArrayList a = ``new` `ArrayList();` `        ``// Iterate over the range [0, N/2]``        ``for` `(``int` `i = ``0``; i < N / ``2``; ++i) {` `            ``// Check if the sequence ends``            ``// with in 1 or not``            ``if` `(a.get(a.size() - ``1``) == ``1``) {` `                ``// Remove the sequence``                ``// ending in 1``                ``a.remove(a.size() - ``1``);``            ``}` `            ``// If it doesn't end in 1``            ``else` `{` `                ``// Decrement by 1``                ``int` `t = a.get(a.size() - ``1``) - ``1``;``                ``a.set(a.get(a.size() - ``1``), t);` `                ``// Insert K to the sequence``                ``// till its size is N``                ``while` `(a.size() < N) {``                    ``a.add(K);``                ``}``            ``}``        ``}` `        ``// Print the sequence stored``        ``// in the vector``        ``for` `(``int` `i : a) {``            ``System.out.print(i + ``" "``);``        ``}``        ``System.out.println();``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `K = ``2``, N = ``4``;``        ``lexiMiddleSmallest(K, N);``    ``}``}` `// This code is contributed by Dharanendra L V.`

## Python3

 `# Python3 program for the above approach` `# Function that finds the middle the``# lexicographical smallest sequence``def` `lexiMiddleSmallest(K, N):``    ``# If K is even``    ``if` `(K ``%` `2` `=``=` `0``):` `        ``# First element is K/2``        ``print``(K ``/``/` `2``,end``=``" "``)` `        ``# Remaining elements of the``        ``# sequence are all integer K``        ``for` `i ``in` `range``(N ``-` `1``):``            ``print``(K, end ``=` `" "``)``        ``print``()``        ``return` `    ``# Stores the sequence when K``    ``# is odd``    ``a ``=` `[(K ``+` `1``) ``/``/` `2``]``*``(N)` `    ``# Iterate over the range [0, N/2]``    ``for` `i ``in` `range``(N``/``/``2``):``        ``# Check if the sequence ends``        ``# with in 1 or not``        ``if` `(a[``-``1``] ``=``=` `1``):` `            ``# Remove the sequence``            ``# ending in 1``            ``del` `a[``-``1``]` `        ``# If it doesn't end in 1``        ``else``:` `            ``# Decrement by 1``            ``a[``-``1``] ``-``=` `1` `            ``# Insert K to the sequence``            ``# till its size is N``            ``while` `(``len``(a) < N):``                ``a.append(K)` `    ``# Print sequence stored``    ``# in the vector``    ``for` `i ``in` `a:``        ``print``(i, end ``=` `" "``)``    ``print``()` `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``K, N ``=` `2``, ``4``    ``lexiMiddleSmallest(K, N)` `# This code is contributed by mohit kumar 29.`

## C#

 `// C# program for the above approach``using` `System;``using` `System.Collections.Generic;``class` `GFG {` `    ``// Function that finds the middle the``    ``// lexicographical smallest sequence``    ``static` `void` `lexiMiddleSmallest(``int` `K, ``int` `N)``    ``{``        ``// If K is even``        ``if` `(K % 2 == 0) {` `            ``// First element is K/2``            ``Console.Write(K / 2 + ``" "``);` `            ``// Remaining elements of the``            ``// sequence are all integer K``            ``for` `(``int` `i = 0; i < N - 1; ++i) {``                ``Console.Write(K + ``" "``);``            ``}``            ``Console.WriteLine();``            ``return``;``        ``}` `        ``// Stores the sequence when K``        ``// is odd``        ``List<``int``> a = ``new` `List<``int``>();` `        ``// Iterate over the range [0, N/2]``        ``for` `(``int` `i = 0; i < N / 2; ++i) {` `            ``// Check if the sequence ends``            ``// with in 1 or not``            ``if` `(a[a.Count - 1] == 1) {` `                ``// Remove the sequence``                ``// ending in 1``                ``a.Remove(a.Count - 1);``            ``}` `            ``// If it doesn't end in 1``            ``else` `{` `                ``// Decrement by 1``                ``a[a.Count - 1] -= 1;` `                ``// Insert K to the sequence``                ``// till its size is N``                ``while` `((``int``)a.Count < N) {``                    ``a.Add(K);``                ``}``            ``}``        ``}` `        ``// Print the sequence stored``        ``// in the vector``        ``foreach``(``int` `i ``in` `a) { Console.Write(i + ``" "``); }``        ``Console.WriteLine();``    ``}` `    ``// Driver Code``    ``public` `static` `void` `Main()``    ``{``        ``int` `K = 2, N = 4;``        ``lexiMiddleSmallest(K, N);``    ``}``}` `// This code is contributed by ukasp.`

## Javascript

 ``
Output:
`1 2 2 2`

Time Complexity: O(N)
Auxiliary Space: O(N)

My Personal Notes arrow_drop_up