Skip to content
Related Articles

Related Articles

Permutation of given string that maximizes count of Palindromic substrings
  • Difficulty Level : Medium
  • Last Updated : 11 Jun, 2020

Given a string S, the task is to find the permutation of the string such that palindromic substrings in the string are maximum.

Note: There can be multiple answers for each string.
Examples:

Input: S = “abcb”
Output: “abbc”
Explanation:
“abbc” is the string with maximum number of palindromic substrings.
Palindromic Substrings are – {“a”, “b”, “b”, “c”, “abbc”}

Input: S = “oolol”
Output: “ololo”

Approach: The idea is to sort the characters of the string such that individually and together form a palindromic substring which will maximize the total palindromic substring possible for the permutation of the string.



Below is the implementation of the above approach:

C++




// C++ implementation to find the
// permutation of the given string
// such that palindromic substrings
// is maximum in the string
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the permutation
// of the string such that the 
// palindromic substrings are maximum
string maxPalindromicSubstring(string s){
      
    // Sorting the characters of  the
    // given string
    sort(s.begin(), s.end());
      
    cout << s;
      
    return s;
}
  
// Driver Code
int main()
{
    // String s
    string s = "abcb";
      
    // Function Call
    maxPalindromicSubstring(s);
    return 0;
}

Java




// Java implementation to find the
// permutation of the given string
// such that palindromic substrings
// is maximum in the string
import java.io.*; 
import java.util.*; 
  
class GFG { 
      
// Function to find the permutation
// of the string such that the 
// palindromic substrings are maximum
static String maxPalindromicSubstring(String s)
{
      
    // Convert input string to char array 
    char tempArray[] = s.toCharArray(); 
          
    // Sorting the characters of the
    // given string
    Arrays.sort(tempArray); 
          
    System.out.println(tempArray);
      
    // Return new sorted string 
    return new String(tempArray);
}
  
// Driver code 
public static void main(String[] args) 
      
    // String s
    String s = "abcb";
      
    // Function Call
    maxPalindromicSubstring(s);
  
// This code is contributed by coder001

Python3




# Python3 implementation to find the
# permutation of the given string
# such that palindromic substrings
# is maximum in the string
  
# Function to find the permutation
# of the string such that the 
# palindromic substrings are maximum
def maxPalindromicSubstring(s):
      
    # Sorting the characters of the
    # given string
    res = ''.join(sorted(s)) 
    s = str(res)
      
    print(s)
  
# Driver Code
if __name__ == '__main__':
      
    # String s
    s = "abcb"
      
    # Function Call
    maxPalindromicSubstring(s)
  
# This code is contributed by BhupendraSingh

C#




// C# implementation to find the
// permutation of the given string
// such that palindromic substrings
// is maximum in the string
using System;
class GFG{ 
      
// Function to find the permutation
// of the string such that the 
// palindromic substrings are maximum
static String maxPalindromicSubstring(String s)
{
      
    // Convert input string to char array 
    char []tempArray = s.ToCharArray(); 
          
    // Sorting the characters of the
    // given string
    Array.Sort(tempArray); 
          
    Console.WriteLine(tempArray);
      
    // Return new sorted string 
    return new String(tempArray);
}
  
// Driver code 
public static void Main() 
      
    // String s
    String s = "abcb";
      
    // Function Call
    maxPalindromicSubstring(s);
  
// This code is contributed by sapnasingh4991
Output:
abbc

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :