Given an integer N, the task is to find the number of permutations of first N positive integers such that prime numbers are at prime indices (for 1-based indexing).
Note: Since, the number of ways may be very large, return the answer modulo 109 + 7.
Examples:
Input: N = 3
Output: 2
Explanation:
Possible permutation of first 3 positive integers, such that prime numbers are at prime indices are: {1, 2, 3}, {1, 3, 2}
Input: N = 5
Output: 12
Explanation:
Some of the possible permutation of first 5 positive integers, such that prime numbers are at prime indices are: {1, 2, 3, 4}, {1, 3, 2, 4}, {4, 2, 3, 1}, {4, 3, 2, 1}
Approach: There are K number of primes from 1 to N and there is exactly K number of prime indexes from index 1 to N. So the number of permutations for prime numbers is K!. Similarly, the number of permutations for non-prime numbers is (N-K)!. So the total number of permutations is K!*(N-K)!
For example:
Given test case: [1,2,3,4,5].
2, 3 and 5 are fixed on prime index slots,
we can only swap them around.
There are 3 x 2 x 1 = 3! ways
[[2,3,5], [2,5,3], [3,2,5],
[3,5,2], [5,2,3], [5,3,2]],
For Non-prime numbers - {1,4}
[[1,4], [4,1]]
So the total is 3!*2!
Below is the implementation of the above approach:
C++
#define mod 1000000007
#include<bits/stdc++.h>
using namespace std;
int fact( int n)
{
int ans = 1;
while (n > 0)
{
ans = ans * n;
n--;
}
return ans;
}
bool isPrime( int n)
{
if (n <= 1)
return false ;
for ( int i = 2; i< sqrt (n) + 1; i++)
{
if (n % i == 0)
return false ;
else
return true ;
}
}
void findPermutations( int n)
{
int prime = 0;
for ( int j = 1; j < n + 1; j++)
{
if (isPrime(j))
prime += 1;
}
int W = fact(prime) * fact(n - prime);
cout << (W % mod);
}
int main()
{
int n = 7;
findPermutations(n);
}
|
Java
import java.io.*;
class GFG{
static int mod = 1000000007 ;
static int fact( int n)
{
int ans = 1 ;
while (n > 0 )
{
ans = ans * n;
n--;
}
return ans;
}
static boolean isPrime( int n)
{
if (n <= 1 )
return false ;
for ( int i = 2 ; i< Math.sqrt(n) + 1 ; i++)
{
if (n % i == 0 )
return false ;
else
return true ;
}
return true ;
}
static void findPermutations( int n)
{
int prime = 0 ;
for ( int j = 1 ; j < n + 1 ; j++)
{
if (isPrime(j))
prime += 1 ;
}
int W = fact(prime) * fact(n - prime);
System.out.println(W % mod);
}
public static void main (String[] args)
{
int n = 7 ;
findPermutations(n);
}
}
|
Python3
import math
def isPrime(n):
if n < = 1 :
return False
for i in range ( 2 , int (n * * 0.5 ) + 1 ):
if n % i = = 0 :
return False
else :
return True
CONST = int (math. pow ( 10 , 9 )) + 7
def findPermutations(n):
prime = 0
for j in range ( 1 , n + 1 ):
if isPrime(j):
prime + = 1
W = math.factorial(prime) * \
math.factorial(n - prime)
print (W % CONST)
if __name__ = = "__main__" :
n = 7
findPermutations(n)
|
C#
using System;
class GFG{
static int mod = 1000000007;
static int fact( int n)
{
int ans = 1;
while (n > 0)
{
ans = ans * n;
n--;
}
return ans;
}
static bool isPrime( int n)
{
if (n <= 1)
return false ;
for ( int i = 2; i < Math.Sqrt(n) + 1; i++)
{
if (n % i == 0)
return false ;
else
return true ;
}
return true ;
}
static void findPermutations( int n)
{
int prime = 0;
for ( int j = 1; j < n + 1; j++)
{
if (isPrime(j))
prime += 1;
}
int W = fact(prime) * fact(n - prime);
Console.Write(W % mod);
}
public static void Main()
{
int n = 7;
findPermutations(n);
}
}
|
Javascript
<script>
let mod = 1000000007;
function fact(n)
{
let ans = 1;
while (n > 0)
{
ans = ans * n;
n--;
}
return ans;
}
function isPrime(n)
{
if (n <= 1)
return false ;
for (let i = 2; i< Math.sqrt(n) + 1; i++)
{
if (n % i == 0)
return false ;
else
return true ;
}
}
function findPermutations(n)
{
let prime = 0;
for (let j = 1; j < n + 1; j++)
{
if (isPrime(j))
prime += 1;
}
let W = fact(prime) * fact(n - prime);
document.write(W % mod);
}
let n = 7;
findPermutations(n);
</script>
|
Output:
144
Time Complexity: O(n3/2)
Auxiliary Space: O(1)