Given an integer N, the task is to find the number of permutations of first N positive integers such that prime numbers are at prime indices (for 1-based indexing).
Note: Since, the number of ways may be very large, return the answer modulo 109 + 7.
Examples:
Input: N = 3
Output: 2
Explanation:
Possible permutation of first 3 positive integers, such that prime numbers are at prime indices are: {1, 2, 3}, {1, 3, 2}
Input: N = 5
Output: 12
Approach: Using Sieve of Eratosthenes
- First, count all the primes between 1 to N using Sieve of Eratosthenes.
- Next, iterate over each position and get the count of prime positions, call it k.
- So, for the k prime numbers, we have limited choice, we need to arrange them in k prime spots.
- For the n-k non-prime numbers, we also have limited choice. We need to arrange them in n-k non-prime spots.
- Both the events are independent, so the total ways would be the product of them.
- Number of ways to arrange k objects in k boxes is k!
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
static const int MOD = 1e9 + 7;
int numPrimeArrangements( int n)
{
vector< bool > prime(n + 1, true );
prime[0] = false ;
prime[1] = false ;
for ( int i = 2; i <= sqrt (n); i++) {
if (prime[i])
for ( int factor = 2;
factor * i <= n;
factor++)
prime[factor * i] = false ;
}
int primeIndices = 0;
for ( int i = 1; i <= n; i++)
if (prime[i])
primeIndices++;
int mod = 1e9 + 7, res = 1;
for ( int i = 1; i <= primeIndices; i++)
res = (1LL * res * i) % mod;
for ( int i = 1; i <= (n - primeIndices); i++)
res = (1LL * res * i) % mod;
return res;
}
int main()
{
int N = 5;
cout << numPrimeArrangements(N);
return 0;
}
|
Java
import java.util.*;
class GFG{
static int MOD = ( int ) (1e9 + 7 );
static int numPrimeArrangements( int n)
{
boolean []prime = new boolean [n + 1 ];
Arrays.fill(prime, true );
prime[ 0 ] = false ;
prime[ 1 ] = false ;
for ( int i = 2 ; i <= Math.sqrt(n); i++) {
if (prime[i])
for ( int factor = 2 ;
factor * i <= n;
factor++)
prime[factor * i] = false ;
}
int primeIndices = 0 ;
for ( int i = 1 ; i <= n; i++)
if (prime[i])
primeIndices++;
int mod = ( int ) (1e9 + 7 ), res = 1 ;
for ( int i = 1 ; i <= primeIndices; i++)
res = ( int ) ((1L * res * i) % mod);
for ( int i = 1 ; i <= (n - primeIndices); i++)
res = ( int ) ((1L * res * i) % mod);
return res;
}
public static void main(String[] args)
{
int N = 5 ;
System.out.print(numPrimeArrangements(N));
}
}
|
Python3
import math;
def numPrimeArrangements(n):
prime = [ True for i in range (n + 1 )]
prime[ 0 ] = False
prime[ 1 ] = False
for i in range ( 2 , int (math.sqrt(n)) + 1 ):
if prime[i]:
factor = 2
while factor * i < = n:
prime[factor * i] = False
factor + = 1
primeIndices = 0
for i in range ( 1 , n + 1 ):
if prime[i]:
primeIndices + = 1
mod = 1000000007
res = 1
for i in range ( 1 , primeIndices + 1 ):
res = (res * i) % mod
for i in range ( 1 , n - primeIndices + 1 ):
res = (res * i) % mod
return res
if __name__ = = '__main__' :
N = 5
print (numPrimeArrangements(N))
|
C#
using System;
class GFG{
static int numPrimeArrangements( int n)
{
bool []prime = new bool [n + 1];
for ( int i = 0; i < prime.Length; i++)
prime[i] = true ;
prime[0] = false ;
prime[1] = false ;
for ( int i = 2; i <= Math.Sqrt(n); i++)
{
if (prime[i])
{
for ( int factor = 2;
factor * i <= n;
factor++)
prime[factor * i] = false ;
}
}
int primeIndices = 0;
for ( int i = 1; i <= n; i++)
if (prime[i])
primeIndices++;
int mod = ( int ) (1e9 + 7), res = 1;
for ( int i = 1; i <= primeIndices; i++)
res = ( int ) ((1L * res * i) % mod);
for ( int i = 1; i <= (n - primeIndices); i++)
res = ( int ) ((1L * res * i) % mod);
return res;
}
public static void Main(String[] args)
{
int N = 5;
Console.Write(numPrimeArrangements(N));
}
}
|
Javascript
<script>
var MOD = parseInt(1e9 + 7);
function numPrimeArrangements(n)
{
var prime = Array.from({length: n+1}, (_, i) => true );
prime[0] = false ;
prime[1] = false ;
for ( var i = 2; i <= Math.sqrt(n); i++) {
if (prime[i])
for (factor = 2;
factor * i <= n;
factor++)
prime[factor * i] = false ;
}
var primeIndices = 0;
for ( var i = 1; i <= n; i++)
if (prime[i])
primeIndices++;
var mod = parseInt( (1e9 + 7)), res = 1;
for ( var i = 1; i <= primeIndices; i++)
res = ((1 * res * i) % mod);
for ( var i = 1; i <= (n - primeIndices); i++)
res = ((1 * res * i) % mod);
return res;
}
var N = 5;
document.write(numPrimeArrangements(N));
</script>
|
Time Complexity: O(N * log(log(N)))
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
15 Nov, 2021
Like Article
Save Article