Given an array **arr[]** of **N** integers and an integer **K**. Also given are **Q** queries which have two numbers **L** and **R**. For every query, you can increase all the elements of the array in the index range **[L, R]** by **1**. The task is to choose exactly **K** queries out of Q queries such that the sum of the array at the end is maximized. Print the **sum** after performing **K** such queries.

**Examples:**

Input:arr[] = {1, 1, 2, 2, 2, 3},

que[] = {{0, 4}, {1, 2}, {2, 5}, {2, 3}, {2, 4}},

K = 3Output:23

We choose the first, third and the fifth query.

After performing first query -> arr[] = {2, 2, 3, 3, 3, 3}

After performing third query -> arr[] = {2, 2, 4, 4, 4, 4}

After performing fifth query -> arr[] = {2, 2, 5, 5, 5, 4}

And the array sum is 2 + 2 + 5 + 5 + 5 + 4 = 23.

Input:arr[] = {4, 5, 4, 21, 22},

que[] = {{1, 2}, {2, 2}, {2, 4}, {2, 2}},

K = 2Output:61

**Naive approach:** A naive approach is to use Dynamic Programming and Combinatorics, in which we choose any K queries out of Q. The combination which gives the maximum sum of the array will be the answer.**Time Complexity**: O(N*N*K)

**Efficient Approach:** Since we need to maximize the sum of the array at the end. We just need to choose those queries that affect the maximum number of elements from the array i.e. with bigger ranges. Every query contributes **(R – L + 1)** to the increase in the sum if it is chosen. The sum of the array elements after performing such queries will be **(initial sum of the array + (Contribution of K queries))**.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` ` ` `// Function to perform K queries out` `// of Q to maximize the final sum` `int` `getFinalSum(` `int` `a[], ` `int` `n, pair<` `int` `, ` `int` `> queries[],` ` ` `int` `q, ` `int` `k)` `{` ` ` `int` `answer = 0;` ` ` ` ` `// Get the initial sum` ` ` `// of the array` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `answer += a[i];` ` ` ` ` `vector<` `int` `> contribution;` ` ` ` ` `// Stores the contriution of every query` ` ` `for` `(` `int` `i = 0; i < q; i++) {` ` ` `contribution.push_back(queries[i].second` ` ` `- queries[i].first + 1);` ` ` `}` ` ` ` ` `// Sort the contribution of queries` ` ` `// in descending order` ` ` `sort(contribution.begin(), contribution.end(),` ` ` `greater<` `int` `>());` ` ` ` ` `int` `i = 0;` ` ` ` ` `// Get the K most contributions` ` ` `while` `(i < k) {` ` ` `answer += contribution[i];` ` ` `i++;` ` ` `}` ` ` ` ` `return` `answer;` `}` ` ` `// Driver code` `int` `main()` `{` ` ` `int` `a[] = { 1, 1, 2, 2, 2, 3 };` ` ` `int` `n = ` `sizeof` `(a) / ` `sizeof` `(a[0]);` ` ` ` ` `pair<` `int` `, ` `int` `> queries[] = { { 0, 4 },` ` ` `{ 1, 2 },` ` ` `{ 2, 5 },` ` ` `{ 2, 3 },` ` ` `{ 2, 4 } };` ` ` `int` `q = ` `sizeof` `(queries) / ` `sizeof` `(queries[0]);` ` ` ` ` `int` `k = 3;` ` ` ` ` `cout << getFinalSum(a, n, queries, q, k);` ` ` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach ` `import` `java.util.*;` ` ` `class` `GFG` `{` ` ` `//pair class` `static` `class` `pair` `{` ` ` `int` `first,second;` ` ` `pair(` `int` `f,` `int` `s)` ` ` `{` ` ` `first = f;` ` ` `second = s;` ` ` `}` `}` ` ` `// Function to perform K queries out ` `// of Q to maximize the final sum ` `static` `int` `getFinalSum(` `int` `a[], ` `int` `n, pair queries[], ` ` ` `int` `q, ` `int` `k) ` `{ ` ` ` `int` `answer = ` `0` `; ` ` ` ` ` `// Get the initial sum ` ` ` `// of the array ` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++) ` ` ` `answer += a[i]; ` ` ` ` ` `Vector<Integer> contribution = ` `new` `Vector<Integer>(); ` ` ` ` ` `// Stores the contriution of every query ` ` ` `for` `(` `int` `i = ` `0` `; i < q; i++)` ` ` `{ ` ` ` `contribution.add(queries[i].second ` ` ` `- queries[i].first + ` `1` `); ` ` ` `} ` ` ` ` ` `//compartor ` ` ` `Comparator<Integer> Comp = ` `new` `Comparator<Integer>()` ` ` `{` ` ` `public` `int` `compare(Integer e1,Integer e2)` ` ` `{` ` ` `if` `(e1 > e2)` ` ` `return` `-` `1` `;` ` ` `else` ` ` `return` `1` `;` ` ` `}` ` ` `};` ` ` ` ` `// Sort the contribution of queries ` ` ` `// in descending order ` ` ` `Collections.sort(contribution,Comp); ` ` ` ` ` `int` `i = ` `0` `; ` ` ` ` ` `// Get the K most contributions ` ` ` `while` `(i < k) ` ` ` `{ ` ` ` `answer += (` `int` `) contribution.get(i); ` ` ` `i++; ` ` ` `} ` ` ` ` ` `return` `answer; ` `} ` ` ` `// Driver code ` `public` `static` `void` `main(String args[]) ` `{ ` ` ` `int` `a[] = { ` `1` `, ` `1` `, ` `2` `, ` `2` `, ` `2` `, ` `3` `}; ` ` ` `int` `n = a.length; ` ` ` ` ` `pair queries[] = ` `new` `pair[` `5` `];` ` ` `queries[` `0` `] = ` `new` `pair( ` `0` `, ` `4` `);` ` ` `queries[` `1` `] = ` `new` `pair( ` `1` `, ` `2` `);` ` ` `queries[` `2` `] = ` `new` `pair( ` `2` `, ` `5` `);` ` ` `queries[` `3` `] = ` `new` `pair( ` `2` `, ` `3` `);` ` ` `queries[` `4` `] = ` `new` `pair( ` `2` `, ` `4` `); ` ` ` `int` `q = queries.length; ` ` ` ` ` `int` `k = ` `3` `; ` ` ` `System.out.println( getFinalSum(a, n, queries, q, k)); ` `} ` `}` ` ` `// This code is contributed by Arnab Kundu` |

## Python3

`# Python 3 implementation of the approach` ` ` `# Function to perform K queries out` `# of Q to maximize the final sum` `def` `getFinalSum(a, n, queries, q, k):` ` ` `answer ` `=` `0` ` ` ` ` `# Get the initial sum` ` ` `# of the array` ` ` `for` `i ` `in` `range` `(n):` ` ` `answer ` `+` `=` `a[i]` ` ` ` ` `contribution ` `=` `[]` ` ` ` ` `# Stores the contriution of every query` ` ` `for` `i ` `in` `range` `(q):` ` ` `contribution.append(queries[i][` `1` `]` `-` ` ` `queries[i][` `0` `] ` `+` `1` `)` ` ` ` ` `# Sort the contribution of queries` ` ` `# in descending order` ` ` `contribution.sort(reverse ` `=` `True` `)` ` ` ` ` `i ` `=` `0` ` ` ` ` `# Get the K most contributions` ` ` `while` `(i < k):` ` ` `answer ` `+` `=` `contribution[i]` ` ` `i ` `+` `=` `1` ` ` ` ` `return` `answer` ` ` `# Driver code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `a ` `=` `[` `1` `, ` `1` `, ` `2` `, ` `2` `, ` `2` `, ` `3` `]` ` ` `n ` `=` `len` `(a)` ` ` ` ` `queries ` `=` `[[` `0` `, ` `4` `], [` `1` `, ` `2` `], ` ` ` `[` `2` `, ` `5` `], [` `2` `, ` `3` `],` ` ` `[` `2` `, ` `4` `]]` ` ` `q ` `=` `len` `(queries);` ` ` ` ` `k ` `=` `3` ` ` ` ` `print` `(getFinalSum(a, n, queries, q, k))` ` ` `# This code is contributed by` `# Surendra_Gangwar` |

**Output:**

23

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend live classes with industry experts, please refer **DSA Live Classes**