Skip to content
Related Articles

Related Articles

Improve Article

Perfect Sum Problem

  • Difficulty Level : Medium
  • Last Updated : 31 May, 2021
Geek Week

Given an array arr[] of integers and an integer K, the task is to print all subsets of the given array with the sum equal to the given target K.
Examples: 
 

Input: arr[] = {5, 10, 12, 13, 15, 18}, K = 30
Output: {12, 18}, {5, 12, 13}, {5, 10, 15}
Explanation: 
Subsets with sum 30 are:
12 + 18 = 30
5 + 12 + 13 = 30
5 + 10 + 15 = 30

Input: arr[] = {1, 2, 3, 4}, K = 5
Output: {2, 3}, {1, 4}

 

Approach: The idea is to find out all the subsets using the Power Set concept. For every set, check if the sum of the set is equal to K or not. If it is equal, then the set is printed. 
Below is the implementation of the above approach:
 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to print the subsets whose
// sum is equal to the given target K
void sumSubsets(vector<int> set, int n, int target)
{
    // Create the new array with size
    // equal to array set[] to create
    // binary array as per n(decimal number)
    int x[set.size()];
    int j = set.size() - 1;
 
    // Convert the array into binary array
    while (n > 0)
    {
        x[j] = n % 2;
        n = n / 2;
        j--;
    }
 
    int sum = 0;
 
    // Calculate the sum of this subset
    for (int i = 0; i < set.size(); i++)
        if (x[i] == 1)
            sum = sum + set[i];
 
    // Check whether sum is equal to target
    // if it is equal, then print the subset
    if (sum == target)
    {
        cout<<("{");
        for (int i = 0; i < set.size(); i++)
            if (x[i] == 1)
                cout << set[i] << ", ";
        cout << ("}, ");
    }
}
 
// Function to find the subsets with sum K
void findSubsets(vector<int> arr, int K)
{
    // Calculate the total no. of subsets
    int x = pow(2, arr.size());
 
    // Run loop till total no. of subsets
    // and call the function for each subset
    for (int i = 1; i < x; i++)
        sumSubsets(arr, i, K);
}
 
// Driver code
int main()
{
    vector<int> arr = { 5, 10, 12, 13, 15, 18 };
    int K = 30;
    findSubsets(arr, K);
    return 0;
}
 
// This code is contributed by mohit kumar 29

Java




// Java implementation of the above approach
import java.util.*;
 
class GFG {
 
    // Function to print the subsets whose
    // sum is equal to the given target K
    public static void sumSubsets(
        int set[], int n, int target)
    {
        // Create the new array with size
        // equal to array set[] to create
        // binary array as per n(decimal number)
        int x[] = new int[set.length];
        int j = set.length - 1;
 
        // Convert the array into binary array
        while (n > 0) {
            x[j] = n % 2;
            n = n / 2;
            j--;
        }
 
        int sum = 0;
 
        // Calculate the sum of this subset
        for (int i = 0; i < set.length; i++)
            if (x[i] == 1)
                sum = sum + set[i];
 
        // Check whether sum is equal to target
        // if it is equal, then print the subset
        if (sum == target) {
            System.out.print("{");
            for (int i = 0; i < set.length; i++)
                if (x[i] == 1)
                    System.out.print(set[i] + ", ");
            System.out.print("}, ");
        }
    }
 
    // Function to find the subsets with sum K
    public static void findSubsets(int[] arr, int K)
    {
        // Calculate the total no. of subsets
        int x = (int)Math.pow(2, arr.length);
 
        // Run loop till total no. of subsets
        // and call the function for each subset
        for (int i = 1; i < x; i++)
            sumSubsets(arr, i, K);
    }
 
    // Driver code
    public static void main(String args[])
    {
        int arr[] = { 5, 10, 12, 13, 15, 18 };
        int K = 30;
 
        findSubsets(arr, K);
    }
}

Python3




# Python3 implementation of the above approach
 
# Function to print the subsets whose
# sum is equal to the given target K
def sumSubsets(sets, n, target) :
 
    # Create the new array with size
    # equal to array set[] to create
    # binary array as per n(decimal number)
    x = [0]*len(sets);
    j = len(sets) - 1;
 
    # Convert the array into binary array
    while (n > 0) :
     
        x[j] = n % 2;
        n = n // 2;
        j -= 1;
     
    sum = 0;
 
    # Calculate the sum of this subset
    for i in range(len(sets)) :
        if (x[i] == 1) :
            sum += sets[i];
 
    # Check whether sum is equal to target
    # if it is equal, then print the subset
    if (sum == target) :
 
        print("{",end="");
        for i in range(len(sets)) :
            if (x[i] == 1) :
                print(sets[i],end= ", ");
        print("}, ",end="");
 
# Function to find the subsets with sum K
def findSubsets(arr, K) :
 
    # Calculate the total no. of subsets
    x = pow(2, len(arr));
 
    # Run loop till total no. of subsets
    # and call the function for each subset
    for i in range(1, x) :
        sumSubsets(arr, i, K);
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 5, 10, 12, 13, 15, 18 ];
    K = 30;
    findSubsets(arr, K);
 
# This code is contributed by Yash_R

C#




// C# implementation of the above approach
using System;
 
class GFG
{
 
    // Function to print the subsets whose
    // sum is equal to the given target K
    public static void sumSubsets(
        int []set, int n, int target)
    {
        // Create the new array with size
        // equal to array set[] to create
        // binary array as per n(decimal number)
        int []x = new int[set.Length];
        int j = set.Length - 1;
 
        // Convert the array into binary array
        while (n > 0)
        {
            x[j] = n % 2;
            n = n / 2;
            j--;
        }
 
        int sum = 0;
 
        // Calculate the sum of this subset
        for (int i = 0; i < set.Length; i++)
            if (x[i] == 1)
                sum = sum + set[i];
 
        // Check whether sum is equal to target
        // if it is equal, then print the subset
        if (sum == target)
        {
            Console.Write("{");
            for (int i = 0; i < set.Length; i++)
                if (x[i] == 1)
                    Console.Write(set[i] + ", ");
            Console.Write("}, ");
        }
    }
 
    // Function to find the subsets with sum K
    public static void findSubsets(int[] arr, int K)
    {
        // Calculate the total no. of subsets
        int x = (int)Math.Pow(2, arr.Length);
 
        // Run loop till total no. of subsets
        // and call the function for each subset
        for (int i = 1; i < x; i++)
            sumSubsets(arr, i, K);
    }
 
    // Driver code
    public static void Main(String []args)
    {
        int []arr = { 5, 10, 12, 13, 15, 18 };
        int K = 30;
 
        findSubsets(arr, K);
    }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// JavaScript implementation of the above approach
 
 
// Function to print the subsets whose
// sum is equal to the given target K
function sumSubsets(set, n, target) {
    // Create the new array with length
    // equal to array set[] to create
    // binary array as per n(decimal number)
    let x = new Array(set.length);
    let j = set.length - 1;
 
    // Convert the array into binary array
    while (n > 0) {
        x[j] = n % 2;
        n = Math.floor(n / 2);
        j--;
    }
 
    let sum = 0;
 
    // Calculate the sum of this subset
    for (let i = 0; i < set.length; i++)
        if (x[i] == 1)
            sum = sum + set[i];
 
    // Check whether sum is equal to target
    // if it is equal, then print the subset
    if (sum == target) {
        document.write("{");
        for (let i = 0; i < set.length; i++)
            if (x[i] == 1)
                document.write(set[i] + ", ");
        document.write("}, ");
    }
}
 
// Function to find the subsets with sum K
function findSubsets(arr, K) {
    // Calculate the total no. of subsets
    let x = Math.pow(2, arr.length);
 
    // Run loop till total no. of subsets
    // and call the function for each subset
    for (let i = 1; i < x; i++)
        sumSubsets(arr, i, K);
}
 
// Driver code
 
let arr = [5, 10, 12, 13, 15, 18];
let K = 30;
findSubsets(arr, K);
 
 
// This code is contributed by gfgking
 
</script>
Output: 
{12, 18, }, {5, 12, 13, }, {5, 10, 15, },

 

Time Complexity: 2N
Efficient Approach: 
This problem can also be solved using Dynamic Programming. Refer to this article.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :