Perfect cubes in a range

• Difficulty Level : Easy
• Last Updated : 27 Apr, 2021

Given two given numbers a and b where 1 <= a <= b, find perfect cubes between a and b (a and b inclusive).
Examples:

Input  :  a = 1, b = 100
Output : 1 8 27 64
Perfect cubes in the given range are
1, 8, 27, 64

Input :  a = 24, b = 576
Output : 27 64 125 216 343 512
Perfect cubes in the given range are
27, 64, 125, 216, 343, 512

Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

This problem is similar to Perfect squares between two numbers.
Method 1 (Naive) : One naive approach is to check all the numbers between a and b (inclusive a and b)
and print the perfect cube. Following is the code for the above approach:

C++

 // A Simple Method to count cubes between a and b#include using namespace std; void printCubes(int a, int b){    // Traverse through all numbers in given range    // and one by one check if number is prime    for (int i = a; i <= b; i++) {        // Check if current number 'i'        // is perfect cube        for (int j = 1; j * j * j <= i; j++) {            if (j * j * j == i) {                cout << j * j * j << "  ";                break;            }        }    }} // Driver codeint main(){    int a = 1, b = 100;    cout << "Perfect cubes in given range:\n ";    printCubes(a, b);    return 0;}

Java

 // A Simple Method to count cubes between a and b class Test {     static void printCubes(int a, int b)    {         // Traverse through all numbers in given range        // and one by one check if number is prime        for (int i = a; i <= b; i++) {             // Check if current number 'i'            // is perfect cube            for (int j = 1; j * j * j <= i; j++) {                if (j * j * j == i) {                    System.out.print(j * j * j + "  ");                    break;                }            }        }    }    // Driver method    public static void main(String[] args)    {        int a = 1, b = 100;        System.out.println("Perfect cubes in given range:");        printCubes(a, b);    }}

Python3

 # A Simple Method to count cubes between a and b def printCubes(a, b) :    # Traverse through all numbers in given range    # and one by one check if number is prime    for i in range(a, b + 1) :                 # Check if current number 'i'        # is perfect cube        j = 1        for j in range(j ** 3, i + 1 ) :                         if (j ** 3 == i) :                print( j ** 3, end = " ")                break              # Driver code a = 1; b = 100print("Perfect cubes in given range: ")printCubes(a, b)  # This code is contributed by Nikita Tiwari.

C#

 // A Simple Method to count cubes// between a and busing System; class GFG {     static void printCubes(int a, int b)    {         // Traverse through all numbers        // in given range and one by        // one check if number is prime        for (int i = a; i <= b; i++) {             // Check if current number 'i'            // is perfect cube            for (int j = 1; j * j * j <= i; j++) {                if (j * j * j == i) {                    Console.Write(j * j * j + " ");                    break;                }            }        }    }     // Driver method    public static void Main()    {        int a = 1, b = 100;         Console.WriteLine("Perfect cubes in"                          + " given range:");        printCubes(a, b);    }} // This code contribute by parashar.



Javascript



Output :

Perfect cubes in given range:
1 8 27 64

Method 2 (Efficient):
We can simply take cube root of ‘a’ and cube root of ‘b’ and print the cubes of number between them.

1-  Given a = 24 b = 576

2-  acr = cbrt(a))  bcr = cbrt(b)
acr = 3 and bcr = 8

3-  Print cubes of 3 to 8 that comes under
the range of a and b(including a and b
both)
27, 64, 125, 216, 343, 512

Below is implementation of above steps.

C++

 // Efficient method to print cubes// between a and b#include #include using namespace std; // An efficient solution to print perfect// cubes between a and bvoid printCubes(int a, int b){    // Find cube root of both a and b    int acrt = cbrt(a);    int bcrt = cbrt(b);     // Print cubes between acrt and bcrt    for (int i = acrt; i <= bcrt; i++)        if (i * i * i >= a && i * i * i <= b)            cout << i * i * i << " ";} // Driver codeint main(){    int a = 24, b = 576;    cout << "Perfect cubes in given range:\n"         << printCubes(a, b);     return 0;}

Java

 // Java progroam for Efficient method// to print cubes between a and b class Test {    // An efficient solution to print perfect    // cubes between a and b    static void printCubes(int a, int b)    {        // Find cube root of both a and b        int acrt = (int)Math.cbrt(a);        int bcrt = (int)Math.cbrt(b);         // Print cubes between acrt and bcrt        for (int i = acrt; i <= bcrt; i++)            if (i * i * i >= a && i * i * i <= b)                System.out.print(i * i * i + " ");    }     // Driver method    public static void main(String[] args)    {        int a = 24, b = 576;        System.out.println("Perfect cubes in given range:");        printCubes(a, b);    }}

Python3

 # Python3 code for Efficient method # to print cubes between a and b def cbrt(n) :    return (int)( n ** (1. / 3)) # An efficient solution to print# perfect cubes between a and bdef printCubes(a, b) :         # Find cube root of    # both a and b    acrt = cbrt(a)    bcrt = cbrt(b)     # Print cubes between acrt and bcrt    for i in range(acrt, bcrt + 1) :        if (i * i * i >= a and i * i * i <= b) :            print(i * i * i, " ", end ="") # Driver codea = 24b = 576print("Perfect cubes in given range:")printCubes(a, b)  # This code is contributed# by Nikita Tiwari.

C#

 // C# progroam for Efficient// method to print cubes// between a and busing System; class GFG{    // An efficient solution    // to print perfect    // cubes between a and b    static void printCubes(int a,                           int b)    {        // Find cube root of        // both a and b        int acrt = (int)Math.Pow(a,                             (double)1 / 3);        int bcrt = (int)Math.Pow(b,                             (double)1 / 3);         // Print cubes between        // acrt and bcrt        for (int i = acrt;                 i <= bcrt; i++)            if (i * i * i >= a &&                i * i * i <= b)                Console.Write(i * i *                              i + " ");    }     // Driver Code    static public void Main ()    {        int a = 24;        int b = 576;        Console.WriteLine("Perfect cubes " +                          "in given range:");        printCubes(a, b);    }} // This code is contributed// by ajit

PHP

 = \$a &&            \$i * \$i * \$i <= \$b)                echo \$i * \$i * \$i , " ";} // Driver code\$a = 24; \$b = 576;echo "Perfect cubes in given range:\n",                    printCubes(\$a, \$b); // This code is contributed by ajit?>

Javascript



Output:

Perfect cubes in given range:
27 64 125 216 343 512

This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.