Open In App

Percentage increase in the volume of cuboid if length, breadth and height are increased by fixed percentages

Given a cuboid and three integers L, B, and H. If the length of the cuboid is increased by L%, breadth is increased by B% percent, and height is increased by H% percent. The task is to find the percentage increase in the volume of the cuboid.
Examples: 
 

Input: L = 50, B = 20, H = 10 
Output: 98%
Input: L = 10, B = 20, H = 30 
Output: 71.6% 
 



 

Approach: Suppose the original length, breadth and height of the cuboid be l, b and h respectively. Now, the increased length will be (l + ((L * l) / 100)) i.e. increasedLength = l * (1 + (L / 100)). Similarly, increased breadth and height will be increasedBreadth = b * (1 + (B / 100)) and increasedHeight = h * (1 + (H / 100))
Now, calculate originalVol = l * b * h and increasedVol = increasedLength * increasedBreadth * increasedHeight
And, the percentage increase can be found as ((increasedVol – originalVol) / originalVol) * 100 
 



(((l * (1 + (L / 100)) * b * (1 + (B / 100)) h * (1 + (H / 100))) – (l * b * h)) / (l * b * h)) * 100 
((l * b * h * (((1 + (L / 100)) * (1 + (B / 100)) * (H / 100)) – 1)) / (l * b * h)) * 100 
(((1 + (L / 100)) * (1 + (B / 100)) * (1 + (H / 100))) – 1) * 100 
 

Below is the implementation of the above approach: 
 




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the percentage increase
// in the volume of the cuboid
double increaseInVol(double l, double b, double h)
{
    double percentInc = (1 + (l / 100))
                        * (1 + (b / 100))
                        * (1 + (h / 100));
    percentInc -= 1;
    percentInc *= 100;
 
    return percentInc;
}
 
// Driver code
int main()
{
    double l = 50, b = 20, h = 10;
    cout << increaseInVol(l, b, h) << "%";
 
    return 0;
}




// Java implementation of the approach
class GFG
{
     
// Function to return the percentage increase
// in the volume of the cuboid
static double increaseInVol(double l,  
                            double b,
                            double h)
{
    double percentInc = (1 + (l / 100)) *
                        (1 + (b / 100)) *
                        (1 + (h / 100));
    percentInc -= 1;
    percentInc *= 100;
 
    return percentInc;
}
 
// Driver code
public static void main(String[] args)
{
    double l = 50, b = 20, h = 10;
    System.out.println(increaseInVol(l, b, h) + "%");
}
}
 
// This code is contributed by Code_Mech




# Python3 implementation of the approach
 
# Function to return the percentage increase
# in the volume of the cuboid
def increaseInVol(l, b, h):
    percentInc = ((1 + (l / 100)) *
                  (1 + (b / 100)) *
                  (1 + (h / 100)))
    percentInc -= 1
    percentInc *= 100
 
    return percentInc
 
# Driver code
l = 50
b = 20
h = 10
print(increaseInVol(l, b, h), "%")
 
# This code is contributed by Mohit Kumar




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the percentage increase
// in the volume of the cuboid
static double increaseInVol(double l,
                            double b,
                            double h)
{
    double percentInc = (1 + (l / 100)) *
                        (1 + (b / 100)) *
                        (1 + (h / 100));
    percentInc -= 1;
    percentInc *= 100;
 
    return percentInc;
}
 
// Driver code
public static void Main()
{
    double l = 50, b = 20, h = 10;
    Console.WriteLine(increaseInVol(l, b, h) + "%");
}
}
 
// This code is contributed by Code_Mech




<script>
 
// Javascript implementation of the approach
 
// Function to return the percentage increase
// in the volume of the cuboid
function increaseInVol(l, b, h)
{
    let percentInc = (1 + (l / 100))
                        * (1 + (b / 100))
                        * (1 + (h / 100));
    percentInc -= 1;
    percentInc *= 100;
 
    return percentInc;
}
 
// Driver code
    let l = 50, b = 20, h = 10;
    document.write(increaseInVol(l, b, h) + "%");
 
</script>

Output: 
98%

 

Time Complexity: O(1)
Auxiliary Space: O(1)


Article Tags :