# Paths with maximum number of ‘a’ from (1, 1) to (X, Y) vertically or horizontally

Given a N X N matrix consisting of characters. Also given are Q queries, where each query contains a co-ordinate (X, Y). For every query, find all paths from (1, 1) to (X, Y) by either moving vertically or horizontally and take the path which has the maximum number of in it. The task is to print the number of non-‘a’-characters along that path.

Examples:

```Input: mat[][] = {{'a', 'b', 'a'},
{'a', 'c', 'd'},
{'b', 'a', 'b'}}
Queries:
X = 1, Y = 3
X = 3, Y = 3
Output:
1st query: 1
2nd query: 2

Query-1: There is only one path from (1, 1) to (1, 3)
i.e., "aba" and the number of characters
which are not 'a' is 1.
Query-2: The path which has the maximum number of 'a'
in it is "aabab", hence non 'a'
characters are 2.
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The problem is a variant of Min-Cost path Dp problem. We need to pre-compute the DP[][] array and then the answer will be DP[X][Y], hence every query can be answered in O(1). If the index position (1, 1) character is not ‘a’, then increase the dp value by 1. Then simply iterate for rows and columns, and do a min-cost DP considering ‘a’ as 1 and non-‘a’ character as 0. Since the DP[][] array stores the min-cost path from (1, 1) to any index (i, j), hence the query can be answered in O(1).

Below is the implementation of the above approach:

## C++

 `// C++ program to find paths with maximum number ` `// of 'a' from (1, 1) to (X, Y) vertically ` `// or horizontally ` ` `  `#include ` `using` `namespace` `std; ` ` `  `const` `int` `n = 3; ` `int` `dp[n][n]; ` ` `  `// Function to answer queries ` `void` `answerQueries(pair<``int``, ``int``> queries[], ``int` `q) ` `{ ` `    ``// Iterate till query ` `    ``for` `(``int` `i = 0; i < q; i++) { ` ` `  `        ``// Decrease to get 0-based indexing ` `        ``int` `x = queries[i].first; ` `        ``x--; ` `        ``int` `y = queries[i].second; ` `        ``y--; ` ` `  `        ``// Print answer ` `        ``cout << dp[x][y] << endl; ` `    ``} ` `} ` ` `  `// Function that pre-computes the dp array ` `void` `pre_compute(``char` `a[][n]) ` `{ ` `    ``// Check fo the first character ` `    ``if` `(a == ``'a'``) ` `        ``dp = 0; ` `    ``else` `        ``dp = 1; ` ` `  `    ``// Iterate in row and columns ` `    ``for` `(``int` `row = 0; row < n; row++) { ` `        ``for` `(``int` `col = 0; col < n; col++) { ` `            ``// If not first row or not first coloumn ` `            ``if` `(row != 0 || col != 0) ` `                ``dp[row][col] = INT_MAX; ` ` `  `            ``// Not first row ` `            ``if` `(row != 0) { ` `                ``dp[row][col] = min(dp[row][col], ` `                                   ``dp[row - 1][col]); ` `            ``} ` ` `  `            ``// Not first coloumn ` `            ``if` `(col != 0) { ` `                ``dp[row][col] = min(dp[row][col], ` `                                   ``dp[row][col - 1]); ` `            ``} ` ` `  `            ``// If it is not 'a' then increase by 1 ` `            ``if` `(a[row][col] != ``'a'` `&& (row != 0 || col != 0)) ` `                ``dp[row][col] += 1; ` `        ``} ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``// character N X N array ` `    ``char` `a[] = { { ``'a'``, ``'b'``, ``'a'` `}, ` `                    ``{ ``'a'``, ``'c'``, ``'d'` `}, ` `                    ``{ ``'b'``, ``'a'``, ``'b'` `} }; ` ` `  `    ``// queries ` `    ``pair<``int``, ``int``> queries[] = { { 1, 3 }, { 3, 3 } }; ` ` `  `    ``// number of queries ` `    ``int` `q = 2; ` ` `  `    ``// function call to pre-compute ` `    ``pre_compute(a); ` ` `  `    ``// function call to answer every query ` `    ``answerQueries(queries, q); ` `} `

## Java

 `// Java program to find paths with maximum number ` `// of 'a' from (1, 1) to (X, Y) vertically ` `// or horizontally ` `class` `GFG  ` `{ ` `static` `class` `pair ` `{  ` `    ``int` `first, second;  ` `    ``public` `pair(``int` `first, ``int` `second)  ` `    ``{  ` `        ``this``.first = first;  ` `        ``this``.second = second;  ` `    ``}  ` `}  ` ` `  `static` `int` `n = ``3``; ` `static` `int` `[][]dp = ``new` `int``[n][n]; ` ` `  `// Function to answer queries ` `static` `void` `answerQueries(pair queries[], ``int` `q) ` `{ ` `    ``// Iterate till query ` `    ``for` `(``int` `i = ``0``; i < q; i++) ` `    ``{ ` ` `  `        ``// Decrease to get 0-based indexing ` `        ``int` `x = queries[i].first; ` `        ``x--; ` `        ``int` `y = queries[i].second; ` `        ``y--; ` ` `  `        ``// Print answer ` `        ``System.out.println(dp[x][y]); ` `    ``} ` `} ` ` `  `// Function that pre-computes the dp array ` `static` `void` `pre_compute(``char` `a[][]) ` `{ ` `    ``// Check fo the first character ` `    ``if` `(a[``0``][``0``] == ``'a'``) ` `        ``dp[``0``][``0``] = ``0``; ` `    ``else` `        ``dp[``0``][``0``] = ``1``; ` ` `  `    ``// Iterate in row and columns ` `    ``for` `(``int` `row = ``0``; row < n; row++)  ` `    ``{ ` `        ``for` `(``int` `col = ``0``; col < n; col++)  ` `        ``{ ` `            ``// If not first row or not first coloumn ` `            ``if` `(row != ``0` `|| col != ``0``) ` `                ``dp[row][col] = Integer.MAX_VALUE; ` ` `  `            ``// Not first row ` `            ``if` `(row != ``0``)  ` `            ``{ ` `                ``dp[row][col] = Math.min(dp[row][col], ` `                                        ``dp[row - ``1``][col]); ` `            ``} ` ` `  `            ``// Not first coloumn ` `            ``if` `(col != ``0``)  ` `            ``{ ` `                ``dp[row][col] = Math.min(dp[row][col], ` `                                        ``dp[row][col - ``1``]); ` `            ``} ` ` `  `            ``// If it is not 'a' then increase by 1 ` `            ``if` `(a[row][col] != ``'a'` `&& (row != ``0` `|| col != ``0``)) ` `                ``dp[row][col] += ``1``; ` `        ``} ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``// character N X N array ` `    ``char` `a[][] = {{ ``'a'``, ``'b'``, ``'a'` `}, ` `                  ``{ ``'a'``, ``'c'``, ``'d'` `}, ` `                  ``{ ``'b'``, ``'a'``, ``'b'` `}}; ` ` `  `    ``// queries ` `    ``pair queries[] = { ``new` `pair( ``1``, ``3` `),  ` `                       ``new` `pair(``3``, ``3` `) }; ` ` `  `    ``// number of queries ` `    ``int` `q = ``2``; ` ` `  `    ``// function call to pre-compute ` `    ``pre_compute(a); ` ` `  `    ``// function call to answer every query ` `    ``answerQueries(queries, q); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## C#

 `// C# program to find paths with maximum number ` `// of 'a' from (1, 1) to (X, Y) vertically ` `// or horizontally ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `class` `pair ` `{  ` `    ``public` `int` `first, second;  ` `    ``public` `pair(``int` `first, ``int` `second)  ` `    ``{  ` `        ``this``.first = first;  ` `        ``this``.second = second;  ` `    ``}  ` `}  ` ` `  `static` `int` `n = 3; ` `static` `int` `[,]dp = ``new` `int``[n, n]; ` ` `  `// Function to answer queries ` `static` `void` `answerQueries(pair []queries, ``int` `q) ` `{ ` `    ``// Iterate till query ` `    ``for` `(``int` `i = 0; i < q; i++) ` `    ``{ ` ` `  `        ``// Decrease to get 0-based indexing ` `        ``int` `x = queries[i].first; ` `        ``x--; ` `        ``int` `y = queries[i].second; ` `        ``y--; ` ` `  `        ``// Print answer ` `        ``Console.WriteLine(dp[x, y]); ` `    ``} ` `} ` ` `  `// Function that pre-computes the dp array ` `static` `void` `pre_compute(``char` `[,]a) ` `{ ` `    ``// Check fo the first character ` `    ``if` `(a[0, 0] == ``'a'``) ` `        ``dp[0, 0] = 0; ` `    ``else` `        ``dp[0, 0] = 1; ` ` `  `    ``// Iterate in row and columns ` `    ``for` `(``int` `row = 0; row < n; row++)  ` `    ``{ ` `        ``for` `(``int` `col = 0; col < n; col++)  ` `        ``{ ` `            ``// If not first row or not first coloumn ` `            ``if` `(row != 0 || col != 0) ` `                ``dp[row, col] = ``int``.MaxValue; ` ` `  `            ``// Not first row ` `            ``if` `(row != 0)  ` `            ``{ ` `                ``dp[row, col] = Math.Min(dp[row, col], ` `                                        ``dp[row - 1, col]); ` `            ``} ` ` `  `            ``// Not first coloumn ` `            ``if` `(col != 0)  ` `            ``{ ` `                ``dp[row, col] = Math.Min(dp[row, col], ` `                                        ``dp[row, col - 1]); ` `            ``} ` ` `  `            ``// If it is not 'a' then increase by 1 ` `            ``if` `(a[row, col] != ``'a'` `&&  ` `               ``(row != 0 || col != 0)) ` `                ``dp[row, col] += 1; ` `        ``} ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``// character N X N array ` `    ``char` `[,]a = {{ ``'a'``, ``'b'``, ``'a'` `}, ` `                 ``{ ``'a'``, ``'c'``, ``'d'` `}, ` `                 ``{ ``'b'``, ``'a'``, ``'b'` `}}; ` ` `  `    ``// queries ` `    ``pair []queries = { ``new` `pair(1, 3),  ` `                       ``new` `pair(3, 3) }; ` ` `  `    ``// number of queries ` `    ``int` `q = 2; ` ` `  `    ``// function call to pre-compute ` `    ``pre_compute(a); ` ` `  `    ``// function call to answer every query ` `    ``answerQueries(queries, q); ` `} ` `} ` ` `  `// This code is contributed by PrinciRaj1992  `

Output:

```1
2
```

Time Complexity: O(N2) for pre-computation and O(1) for each query.
Auxiliary Space: O(N2)

My Personal Notes arrow_drop_up Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.