Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Partition the digits of an integer such that it satisfies a given condition

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an integer X, the task is to partition its digit into two groups either A or B such that the sequence of digits is non decreasing when all the digits of group A are arranged followed by all the digits of group B from left to right as they appear in X. Print -1 if no such partition is possible or else return a string S of the same length as X where S[i] is either A or B
Examples: 
 

Input: X = 5164 
Output: BABA 
The digits in group A are 1 and 4 and in group B are 5 and 6. This partition satisfies the condition as when all the digits of A are written and then all the digits of B are written as they appear in X from left to right, the sequence is non-decreasing, i.e., 1456.
Input: X = 654 
Output: -1 
No such partition is possible that may result in non-decreasing sequence. For example, if we consider BBA and write the sequence, it turns out 465. Similarly for BAA, it is 546. and for AAA it is 654. 
 

 

Approach: 
 

  1. Let us assume a digit D so that all digits less than D goes to group A and all the digits greater than D goes to group B.
  2. For the digits equal to D, it will go to group A only if any digit of group B is present before it otherwise it will go to group B.
  3. After such partition, check if it forms a non decreasing sequence. Otherwise try for some different D.
  4. The value of D ranges from 0 to 9.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate sequence
// from the given string
vector<int> makeSeq(string s, int a[])
{
    // Initialize vector to
    // store sequence
    vector<int> seq;
 
    // First add all the digits
    // of group A from left to right
    for (int i = 0; i < s.size(); i++)
        if (s[i] == 'A')
            seq.push_back(a[i]);
 
    // Then add all the digits
    // of group B from left to right
    for (int i = 0; i < s.size(); i++)
        if (s[i] == 'B')
            seq.push_back(a[i]);
 
    // Return the sequence
    return seq;
}
 
// Function that returns true if
// the sequence is non-decreasing
bool checkSeq(vector<int> v)
{
    // Initialize result
    bool check = true;
 
    for (int i = 1; i < v.size(); i++)
        if (v[i] < v[i - 1])
            check = false;
 
    return check;
}
 
// Function to partition the digits
// of an integer such that it satisfies
// the given conditions
string digitPartition(int X)
{
    // Convert the integer to string
    string num = to_string(X);
 
    // Length of the string
    int l = num.size();
 
    // Array to store the digits
    int a[l];
 
    // Storing the digits of X in array
    for (int i = 0; i < l; i++)
        a[i] = (num[i] - '0');
 
    for (int D = 0; D < 10; D++) {
 
        // Initialize the result
        string res = "";
 
        // Loop through the digits
        for (int i = 0; i < l; i++) {
 
            // Put into group A if
            // digit less than D
            if (a[i] < D)
                res += 'A';
 
            // Put into group B if
            // digit greater than D
            else if (a[i] > D)
                res += 'B';
 
            // Put into group C if
            // digit equal to D
            else
                res += 'C';
        }
 
        bool flag = false;
 
        // Loop through the digits
        // to decide for group C digits
        for (int i = 0; i < l; i++) {
 
            // Set flag equal to true
            // if group B digit present
            if (res[i] == 'B')
                flag = true;
 
            // If flag is true put in
            // group A or else put in B
            if (res[i] == 'C')
                res[i] = flag ? 'A' : 'B';
        }
 
        // Generate the sequence from partition
        vector<int> seq = makeSeq(res, a);
 
        // Check if the sequence is
        // non decreasing
        if (checkSeq(seq))
            return res;
    }
 
    // Return -1 if no such
    // partition is possible
    return "-1";
}
 
// Driver code
int main()
{
    int X = 777147777;
 
    cout << digitPartition(X);
 
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to generate sequence
// from the given String
static Vector<Integer> makeSeq(String s, int a[])
{
    // Initialize vector to
    // store sequence
    Vector<Integer> seq = new Vector<Integer>();
 
    // First add all the digits
    // of group A from left to right
    for (int i = 0; i < s.length(); i++)
        if (s.charAt(i) == 'A')
            seq.add(a[i]);
 
    // Then add all the digits
    // of group B from left to right
    for (int i = 0; i < s.length(); i++)
        if (s.charAt(i) == 'B')
            seq.add(a[i]);
 
    // Return the sequence
    return seq;
}
 
// Function that returns true if
// the sequence is non-decreasing
static boolean checkSeq(Vector<Integer> v)
{
    // Initialize result
    boolean check = true;
 
    for (int i = 1; i < v.size(); i++)
        if (v.get(i) < v.get(i - 1))
            check = false;
 
    return check;
}
 
// Function to partition the digits
// of an integer such that it satisfies
// the given conditions
static String digitPartition(int X)
{
    // Convert the integer to String
    String num = String.valueOf(X);
 
    // Length of the String
    int l = num.length();
 
    // Array to store the digits
    int []a = new int[l];
 
    // Storing the digits of X in array
    for (int i = 0; i < l; i++)
        a[i] = (num.charAt(i) - '0');
 
    for (int D = 0; D < 10; D++)
    {
 
        // Initialize the result
        String res = "";
 
        // Loop through the digits
        for (int i = 0; i < l; i++)
        {
 
            // Put into group A if
            // digit less than D
            if (a[i] < D)
                res += 'A';
 
            // Put into group B if
            // digit greater than D
            else if (a[i] > D)
                res += 'B';
 
            // Put into group C if
            // digit equal to D
            else
                res += 'C';
        }
 
        boolean flag = false;
 
        // Loop through the digits
        // to decide for group C digits
        for (int i = 0; i < l; i++)
        {
 
            // Set flag equal to true
            // if group B digit present
            if (res.charAt(i) == 'B')
                flag = true;
 
            // If flag is true put in
            // group A or else put in B
            if (res.charAt(i) == 'C')
                res = res.substring(0, i) +
                (flag ? 'A' : 'B') + res.substring(i + 1);
        }
 
        // Generate the sequence from partition
        Vector<Integer> seq = makeSeq(res, a);
 
        // Check if the sequence is
        // non decreasing
        if (checkSeq(seq))
            return res;
    }
 
    // Return -1 if no such
    // partition is possible
    return "-1";
}
 
// Driver code
public static void main(String[] args)
{
    int X = 777147777;
 
    System.out.print(digitPartition(X));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
 
# Function to generate sequence
# from the given string
def makeSeq(s, a) :
 
    # Initialize vector to
    # store sequence
    seq = [];
 
    # First add all the digits
    # of group A from left to right
    for i in range(len(s)) :
        if (s[i] == 'A') :
            seq.append(a[i]);
 
    # Then add all the digits
    # of group B from left to right
    for i in range(len(s)) :
        if (s[i] == 'B') :
            seq.append(a[i]);
 
    # Return the sequence
    return seq;
 
# Function that returns true if
# the sequence is non-decreasing
def checkSeq(v) :
 
    # Initialize result
    check = True;
 
    for i in range(1, len(v)) :
        if (v[i] < v[i - 1]) :
            check = False;
 
    return check;
 
# Function to partition the digits
# of an integer such that it satisfies
# the given conditions
def digitPartition(X) :
     
    # Convert the integer to string
    num = str(X);
 
    # Length of the string
    l = len(num);
 
    # Array to store the digits
    a = [0]*l;
 
    # Storing the digits of X in array
    for i in range(l) :
        a[i] = (ord(num[i]) - ord('0'));
 
    for D in range(10) :
 
        # Initialize the result
        res = "";
 
        # Loop through the digits
        for i in range(l) :
 
            # Put into group A if
            # digit less than D
            if (a[i] < D) :
                res += 'A';
 
            # Put into group B if
            # digit greater than D
            elif (a[i] > D) :
                res += 'B';
 
            # Put into group C if
            # digit equal to D
            else :
                res += 'C';
 
        flag = False;
 
        # Loop through the digits
        # to decide for group C digits
        for i in range(l) :
 
            # Set flag equal to true
            # if group B digit present
            if (res[i] == 'B') :
                flag = True;
 
            # If flag is true put in
            # group A or else put in B
            res = list(res);
             
            if (res[i] == 'C') :
                res[i] = 'A' if flag else 'B';
 
        # Generate the sequence from partition
        seq = makeSeq(res, a);
 
        # Check if the sequence is
        # non decreasing
        if (checkSeq(seq)) :
            return "".join(res);
 
    # Return -1 if no such
    # partition is possible
    return "-1";
 
# Driver code
if __name__ == "__main__" :
 
    X = 777147777;
 
    print(digitPartition(X));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to generate sequence
// from the given String
static List<int> makeSeq(String s, int []a)
{
    // Initialize vector to
    // store sequence
    List<int> seq = new List<int>();
 
    // First add all the digits
    // of group A from left to right
    for (int i = 0; i < s.Length; i++)
        if (s[i] == 'A')
            seq.Add(a[i]);
 
    // Then add all the digits
    // of group B from left to right
    for (int i = 0; i < s.Length; i++)
        if (s[i] == 'B')
            seq.Add(a[i]);
 
    // Return the sequence
    return seq;
}
 
// Function that returns true if
// the sequence is non-decreasing
static bool checkSeq(List<int> v)
{
    // Initialize result
    bool check = true;
 
    for (int i = 1; i < v.Count; i++)
        if (v[i] < v[i - 1])
            check = false;
 
    return check;
}
 
// Function to partition the digits
// of an integer such that it satisfies
// the given conditions
static String digitPartition(int X)
{
    // Convert the integer to String
    String num = String.Join("",X);
 
    // Length of the String
    int l = num.Length;
 
    // Array to store the digits
    int []a = new int[l];
 
    // Storing the digits of X in array
    for (int i = 0; i < l; i++)
        a[i] = (num[i] - '0');
 
    for (int D = 0; D < 10; D++)
    {
 
        // Initialize the result
        String res = "";
 
        // Loop through the digits
        for (int i = 0; i < l; i++)
        {
 
            // Put into group A if
            // digit less than D
            if (a[i] < D)
                res += 'A';
 
            // Put into group B if
            // digit greater than D
            else if (a[i] > D)
                res += 'B';
 
            // Put into group C if
            // digit equal to D
            else
                res += 'C';
        }
 
        bool flag = false;
 
        // Loop through the digits
        // to decide for group C digits
        for (int i = 0; i < l; i++)
        {
 
            // Set flag equal to true
            // if group B digit present
            if (res[i] == 'B')
                flag = true;
 
            // If flag is true put in
            // group A or else put in B
            if (res[i] == 'C')
                res = res.Substring(0, i) +
                (flag ? 'A' : 'B') + res.Substring(i + 1);
        }
 
        // Generate the sequence from partition
        List<int> seq = makeSeq(res, a);
 
        // Check if the sequence is
        // non decreasing
        if (checkSeq(seq))
            return res;
    }
 
    // Return -1 if no such
    // partition is possible
    return "-1";
}
 
// Driver code
public static void Main(String[] args)
{
    int X = 777147777;
 
    Console.Write(digitPartition(X));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




// JavaScript implementation of the approach
 
 
// Function to generate sequence
// from the given string
function makeSeq(s, a)
{
    // Initialize vector to
    // store sequence
    let seq = [];
 
    // First add all the digits
    // of group A from left to right
    for (var i = 0; i < s.length; i++)
        if (s[i] == 'A')
            seq.push(a[i]);
 
    // Then add all the digits
    // of group B from left to right
    for (var i = 0; i < s.length; i++)
        if (s[i] == 'B')
            seq.push(a[i]);
 
    // Return the sequence
    return seq;
}
 
// Function that returns true if
// the sequence is non-decreasing
function checkSeq(v)
{
    // Initialize result
    let check = true;
 
    for (var i = 1; i < v.length; i++)
        if (v[i] < v[i - 1])
            check = false;
 
    return check;
}
 
// Function to partition the digits
// of an integer such that it satisfies
// the given conditions
function digitPartition(X)
{
    // Convert the integer to string
    let num = "" + X;
 
    // Length of the string
    let l = num.length;
 
    // Array to store the digits
    let a = new Array(l);
 
    // Storing the digits of X in array
    for (var i = 0; i < l; i++)
        a[i] = parseInt(num[i]);
 
    for (var D = 0; D < 10; D++) {
 
        // Initialize the result
        let res = "";
 
        // Loop through the digits
        for (var i = 0; i < l; i++) {
 
            // Put into group A if
            // digit less than D
            if (a[i] < D)
                res += 'A';
 
            // Put into group B if
            // digit greater than D
            else if (a[i] > D)
                res += 'B';
 
            // Put into group C if
            // digit equal to D
            else
                res += 'C';
        }
 
        let flag = false;
 
        // Loop through the digits
        // to decide for group C digits
        for (var i = 0; i < l; i++) {
 
            // Set flag equal to true
            // if group B digit present
            if (res[i] == 'B')
                flag = true;
 
            // If flag is true put in
            // group A or else put in B
            if (res[i] == 'C')
                res[i] = flag ? 'A' : 'B';
        }
 
        // Generate the sequence from partition
        let seq = makeSeq(res, a);
 
        // Check if the sequence is
        // non decreasing
        if (checkSeq(seq))
            return res;
    }
 
    // Return -1 if no such
    // partition is possible
    return "-1";
}
 
 
// Driver code
let X = 777147777;
console.log(digitPartition(X));
 
 
// This code is contributed by phasing17

Output: 

BBBAABBBB

 

Time Complexity: O(N), where N is length of string

Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Last Updated : 05 Sep, 2022
Like Article
Save Article
Similar Reads
Related Tutorials