Skip to content
Related Articles

Related Articles

Improve Article
Parsing PDFs in Python with Tika
  • Last Updated : 17 Aug, 2020

Apache Tika is a library that is used for document type detection and content extraction from various file formats. Using this, one can develop a universal type detector and content extractor to extract both structured text and metadata from different types of documents such as spreadsheets, text documents, images, PDF’s, and even multimedia input formats to a certain extent. Tika-Python is Python binding to the Apache TikaTM REST services allowing tika to be called natively in python language.

Installation:

To install Tika type the below command in the terminal. 

pip install tika

Note: Tika is written in Java, so you need a java(7 or 7+) runtime installed

For extracting contents from the PDF files we will use from_file() method of parser object. So let’s see the description first.



Syntax: parser.from_file(filename, additional)

Parameters:

  • filename: This is location of file, it is opened in rb mode i.e. read binary mode
  • additional: param service: service requested from the tika server, Default value is ‘all’, which results in recursive text content+metadata.
    • ‘meta’ returns only metadata. ‘text’ returns only content.
    • param xmlContent: You can have XML content, default value- False

Return type: dictionary.

Now, Let’s see the python program for Extracting pdf’s data:

Example 1: Extracting contents of the pdf file.

Python3




# import parser object from tike
from tika import parser  
  
# opening pdf file
parsed_pdf = parser.from_file("sample.pdf")
  
# saving content of pdf
# you can also bring text only, by parsed_pdf['text'] 
# parsed_pdf['content'] returns string 
data = parsed_pdf['content'
  
# Printing of content 
print(data)
  
# <class 'str'>
print(type(data))

Output:

pdf content



Example 2: Extracting Meta-Data of pdf file.

Python3




# import parser object from tike
from tika import parser  
  
parsed_pdf = parser.from_file("sample.pdf")
  
# ['metadata'] attribute returns 
# key-value pairs of meta-data 
print(parsed_pdf['metadata']) 
  
# <class 'dict'>
print(type(parsed_pdf['metadata']))

Output:

Meta data

Example 3: Extract keys.

Python3




from tika import parser
  
parsed_pdf=parser.from_file("sample.pdf")
  
# Returns keys applicable for given pdf.
print(parsed_pdf.keys())

Output:

keys of the paresed dictionary

Example 4: Know the tika server status.

Python3




from tika import parser
  
# You can also know the 
# status returned from tika 
# server, 200 for success 
parsed_pdf= parser.from_file("sample.pdf")
  
print(parsed_pdf['status'],type(parsed_pdf['status'] ))

Output:

200 <class 'int'>

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :