Skip to content
Related Articles

Related Articles

Improve Article
Parallel Coordinates Plot using Plotly in Python
  • Last Updated : 01 Oct, 2020

A Plotly is a Python library that is used to design graphs, especially interactive graphs. It can plot various graphs and charts like histogram, barplot, boxplot, spreadplot, and many more. It is mainly used in data analysis as well as financial analysis. Plotly is an interactive visualization library.

Parallel Coordinates Plot

Parallel coordinates plot is a common way of visualizing and analyzing high-dimensional datasets. A point in n-dimensional space is represented as a polyline with vertices on the parallel axes and the position of the vertex corresponds to the coordinate of the point.

 Syntax: parallel_coordinates(data_frame=None, dimensions=None, labels={}, range_color=None)

Parameters:

data_frame: This argument needs to be passed for column names (and not keyword names) to be used. 



dimensions: Either names of columns in data_frame, or pandas Series, or array_like objects Values from these columns are used for multidimensional visualization.

labels: By default, column names are used in the figure for axis titles, legend entries and hovers. This parameter allows this to be overridden. The keys of this dict should correspond to column names, and the values should correspond to the desired label to be displayed.

range_color: If provided, overrides auto-scaling on the continuous color scale.

Example 1:

Python3




import plotly.express as px
  
  
df = px.data.tips()
fig = px.parallel_coordinates(
    df, dimensions=['tip', 'total_bill', 'day','time'],)
  
fig.show()

Output:

Example 2: Showing Parallel Coordinates Chart with go.Parcoords()



Python3




import plotly.graph_objects as go
  
fig = go.Figure(data=go.Parcoords(
    line_color='green',
    dimensions=list([
        dict(range=[4, 9],
             label='A', values=[5, 8]),
        dict(range=[2, 7],
             label='B', values=[3, 6]),
    ])
)
)
  
fig.show()

Output:

Example 3:

Python3




import plotly.graph_objects as go
import plotly.express as px
  
df = px.data.tips()
  
fig = go.Figure(data=go.Parcoords(
    dimensions=list([
        dict(range=[0, 8],
             constraintrange=[4, 8],
             label='Sepal Length', values=df['tip']),
        dict(range=[0, 8],
             label='Sepal Width', values=df['total_bill']),
    ])
)
)
  
  
fig.show()

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :