Skip to content
Related Articles

Related Articles

Improve Article
Pandas – How to reset index in a given DataFrame
  • Last Updated : 10 Jul, 2020

Let us see how to reset the index of a DataFrame after dropping some of the rows from the DataFrame.

Approach :

  1. Import the Pandas module.
  2. Create a DataFrame.
  3. Drop some rows from the DataFrame using the drop() method.
  4. Reset the index of the DataFrame using the reset_index() method.
  5. Display the DataFrame after each step.




# importing the modules
import pandas as pd
import numpy as np
  
# creating a DataFrame
ODI_runs = {'name': ['Tendulkar', 'Sangakkara', 'Ponting',
                      'Jayasurya', 'Jayawardene', 'Kohli',
                      'Haq', 'Kallis', 'Ganguly', 'Dravid'],
            'runs': [18426, 14234, 13704, 13430, 12650,
                     11867, 11739, 11579, 11363, 10889]}
df = pd.DataFrame(ODI_runs)
  
# displaying the original DataFrame
print("Original DataFrame :")
print(df)
  
# dropping the 0th and the 1st index
df = df.drop([0, 1])
  
# displaying the altered DataFrame
print("DataFrame after removing the 0th and 1st row")
print(df)
  
# resetting the DatFrame index
df = df.reset_index()
  
# displaying the DataFrame with new index
print("Dataframe after resetting the index")
print(df)

Output :


 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :