Pandas – GroupBy One Column and Get Mean, Min, and Max values


We can use Groupby function to split dataframe into groups and apply different operations on it. One of them is Aggregation. Aggregation i.e. computing statistical parameters for each group created example – mean, min, max, or sums.

Let’s have a look at how we can group a dataframe by one column and get their mean, min, and max values.

Example 1:

filter_none

edit
close

play_arrow

link
brightness_4
code

import pandas as pd
  
  
# creating a dataframe
df = pd.DataFrame([('Bike', 'Kawasaki', 186),
                   ('Bike', 'Ducati Panigale', 202),
                   ('Car', 'Bugatti Chiron', 304), 
                   ('Car', 'Jaguar XJ220', 210),
                   ('Bike', 'Lightning LS-218', 218), 
                   ('Car', 'Hennessey Venom GT', 270),
                   ('Bike', 'BMW S1000RR', 188)],
                  columns =('Type', 'Name', 'top_speed(mph)'))
  
df

chevron_right


Output :

Finding mean, min and max values.



filter_none

edit
close

play_arrow

link
brightness_4
code

# using groupby function with aggregation
# to get mean, min and max values
result = df.groupby('Type').agg({'top_speed(mph)': ['mean', 'min', 'max']})
  
print("Mean, min, and max values of Top Speed grouped by Vehicle Type")
print(result)

chevron_right


Output :

Example 2:

filter_none

edit
close

play_arrow

link
brightness_4
code

import pandas as pd
  
  
# creating a dataframe
sales_data = pd.DataFrame({
'customer_id':[3005, 3001, 3002, 3009, 3005, 3007,
               3002, 3004, 3009, 3008, 3003, 3002],
      
'salesman_id': [102, 105, 101, 103, 102, 101, 101,
                106, 103, 102, 107, 101],
  
'purchase_amt':[1500, 2700, 1525, 1100, 948, 2400,
                5700, 2000, 1280, 2500, 750, 5050]})
  
sales_data

chevron_right


Output :

Finding mean, min and max values.

filter_none

edit
close

play_arrow

link
brightness_4
code

# using groupby function with aggregation 
# to get mean, min and max values
result = sales_data.groupby('salesman_id').agg({'purchase_amt': ['mean', 'min', 'max']})
  
print("Mean, min, and max values of Purchase Amount grouped by Salesman id")
print(result)

chevron_right


Output :

Example 3:

filter_none

edit
close

play_arrow

link
brightness_4
code

import pandas as pd
  
  
# creating a dataframe
df = pd.DataFrame({"Team": ["Radisson", "Radisson", "Gladiators",
                            "Blues", "Gladiators", "Blues"
                            "Gladiators", "Gladiators", "Blues"
                            "Blues", "Radisson", "Radisson"],
                     
        "Position": ["Player", "Extras", "Player", "Extras",
                     "Extras", "Player", "Player", "Player",
                     "Extras", "Player", "Player", "Extras"],
                     
        "Age": [22, 24, 21, 29, 32, 20, 21, 23, 30, 26, 20, 31]})
df

chevron_right


Output :

Finding mean, min and max values.

filter_none

edit
close

play_arrow

link
brightness_4
code

# using groupby function with aggregation 
# to get mean, min and max values
result = df.groupby('Team').agg({'Age': ['mean', 'min', 'max']})
  
print("Mean, min, and max values of Age grouped by Team")
print(result)

chevron_right


Output :

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.