Related Articles

Related Articles

Pandas Groupby and Sum
  • Last Updated : 25 Nov, 2020

Pandas is an open-source library that is built on top of NumPy library. It is a Python package that offers various data structures and operations for manipulating numerical data and time series. It is mainly popular for importing and analyzing data much easier. Pandas is fast and it has high-performance & productivity for users. 

Groupby is a pretty simple concept. We can create a grouping of categories and apply a function to the categories. It’s a simple concept but it’s an extremely valuable technique that’s widely used in data science. It is helpful in the sense that we can :

  • Compute summary statistics for every group
  • Perform group-specific transformations
  • Do the filtration of data

The groupby() involves a combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups such as sum().

Below are some examples which implement the use of groupby().sum() in pandas module: 

Example 1:

Python3



filter_none

edit
close

play_arrow

link
brightness_4
code

# import required module
import pandas as pd
  
# create dataframe
df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', 'Parrot', 'Parrot'],
                   'Max Speed': [380., 370., 24., 26.]})
  
# use groupby() to compute sum
df.groupby(['Animal']).sum()

chevron_right


Output

Example 2:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import required module
import pandas as pd
  
# assign list
l = [[100, 200, 300], [10, None, 40],
     [20, 10, 30], [100, 200, 200]]
  
# create dataframe
df = pd.DataFrame(l, columns=["a", "b", "c"])
  
# use groupby() to generate sum
df.groupby(by=["b"]).sum()

chevron_right


Output:

Example 3:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# import required module
import pandas as pd
  
# assign data
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils',
                     'Kings''kings', 'Kings', 'Kings',
                     'Riders', 'Royals', 'Royals', 'Riders'],
            'Rank': [1, 2, 2, 3, 3, 4, 1, 1, 2, 4, 1, 2],
  
            'Year': [2014, 2015, 2014, 2015, 2014, 2015, 2016
                     2017, 2016, 2014, 2015, 2017],
  
            'Points': [876, 789, 863, 673, 741, 812, 756, 788
                       694, 701, 804, 690]}
  
# create dataframe
df = pd.DataFrame(ipl_data)
  
# use groupby() to generate sum
df.groupby(['Team']).sum()

chevron_right


Output:


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :