Skip to content
Related Articles

Related Articles

Improve Article

Pairs such that one is a power multiple of other

  • Difficulty Level : Easy
  • Last Updated : 30 Apr, 2021

You are given an array A[] of n-elements and a positive integer k. Now you have find the number of pairs Ai, Aj such that Ai = Aj*(kx) where x is an integer. 
Note: (Ai, Aj) and (Aj, Ai) must be count once.
Examples : 
 

Input : A[] = {3, 6, 4, 2},  k = 2
Output : 2
Explanation : We have only two pairs 
(4, 2) and (3, 6)

Input : A[] = {2, 2, 2},   k = 2
Output : 3
Explanation : (2, 2), (2, 2), (2, 2) 
that are (A1, A2), (A2, A3) and (A1, A3) are 
total three pairs where Ai = Aj * (k^0) 

 

To solve this problem, we first sort the given array and then for each element Ai, we find number of elements equal to value Ai * k^x for different value of x till Ai * k^x is less than or equal to largest of Ai. 
Algorithm: 
 

    // sort the given array
    sort(A, A+n);

    // for each A[i] traverse rest array
    for (int i=0; i<n; i++)
    {
        for (int j=i+1; j<n; j++)
        {
            // count Aj such that Ai*k^x = Aj
            int x = 0;

            // increase x till Ai * k^x <= 
            // largest element
            while ((A[i]*pow(k, x)) <= A[j])
            {
                if ((A[i]*pow(k, x)) == A[j])
                {              
                     ans++;
                     break;
                }
                x++;
            }        
        }   
    }
    // return answer
    return ans;

 

 



C++




// Program to find pairs count
#include <bits/stdc++.h>
using namespace std;
 
// function to count the required pairs
int countPairs(int A[], int n, int k) {
  int ans = 0;
  // sort the given array
  sort(A, A + n);
 
  // for each A[i] traverse rest array
  for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {
 
      // count Aj such that Ai*k^x = Aj
      int x = 0;
 
      // increase x till Ai * k^x <= largest element
      while ((A[i] * pow(k, x)) <= A[j]) {
        if ((A[i] * pow(k, x)) == A[j]) {
          ans++;
          break;
        }
        x++;
      }
    }
  }
  return ans;
}
 
// driver program
int main() {
  int A[] = {3, 8, 9, 12, 18, 4, 24, 2, 6};
  int n = sizeof(A) / sizeof(A[0]);
  int k = 3;
  cout << countPairs(A, n, k);
  return 0;
}

Java




// Java program to find pairs count
import java.io.*;
import java .util.*;
 
class GFG {
     
    // function to count the required pairs
    static int countPairs(int A[], int n, int k)
    {
        int ans = 0;
         
        // sort the given array
        Arrays.sort(A);
         
        // for each A[i] traverse rest array
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++)
            {
         
                // count Aj such that Ai*k^x = Aj
                int x = 0;
             
                // increase x till Ai * k^x <= largest element
                while ((A[i] * Math.pow(k, x)) <= A[j])
                {
                    if ((A[i] * Math.pow(k, x)) == A[j])
                    {
                        ans++;
                        break;
                    }
                    x++;
                }
            }
        }
        return ans;
    }
     
    // Driver program
    public static void main (String[] args)
    {
        int A[] = {3, 8, 9, 12, 18, 4, 24, 2, 6};
        int n = A.length;
        int k = 3;
        System.out.println (countPairs(A, n, k));
         
    }
}
 
// This code is contributed by vt_m.

Python3




# Program to find pairs count
import math
 
# function to count the required pairs
def countPairs(A, n, k):
    ans = 0
 
    # sort the given array
    A.sort()
     
    # for each A[i] traverse rest array
    for i in range(0,n):
 
        for j in range(i + 1, n):
 
            # count Aj such that Ai*k^x = Aj
            x = 0
 
            # increase x till Ai * k^x <= largest element
            while ((A[i] * math.pow(k, x)) <= A[j]) :
                if ((A[i] * math.pow(k, x)) == A[j]) :
                    ans+=1
                    break
                x+=1
    return ans
 
 
# driver program
A = [3, 8, 9, 12, 18, 4, 24, 2, 6]
n = len(A)
k = 3
 
print(countPairs(A, n, k))
 
# This code is contributed by
# Smitha Dinesh Semwal

C#




// C# program to find pairs count
using System;
 
class GFG {
     
    // function to count the required pairs
    static int countPairs(int []A, int n, int k)
    {
        int ans = 0;
         
        // sort the given array
        Array.Sort(A);
         
        // for each A[i] traverse rest array
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
         
                // count Aj such that Ai*k^x = Aj
                int x = 0;
             
                // increase x till Ai * k^x <= largest element
                while ((A[i] * Math.Pow(k, x)) <= A[j])
                {
                    if ((A[i] * Math.Pow(k, x)) == A[j])
                    {
                        ans++;
                        break;
                    }
                    x++;
                }
            }
        }
        return ans;
    }
     
    // Driver program
    public static void Main ()
    {
        int []A = {3, 8, 9, 12, 18, 4, 24, 2, 6};
        int n = A.Length;
        int k = 3;
        Console.WriteLine(countPairs(A, n, k));
         
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP Program to find pairs count
 
// function to count
// the required pairs
function countPairs($A, $n, $k)
{
$ans = 0;
 
// sort the given array
sort($A);
 
// for each A[i]
// traverse rest array
for ($i = 0; $i < $n; $i++)
{
    for ($j = $i + 1; $j < $n; $j++)
    {
 
    // count Aj such that Ai*k^x = Aj
    $x = 0;
 
    // increase x till Ai *
    // k^x <= largest element
    while (($A[$i] * pow($k, $x)) <= $A[$j])
    {
        if (($A[$i] * pow($k, $x)) == $A[$j])
        {
        $ans++;
        break;
        }
        $x++;
    }
    }
}
return $ans;
}
 
// Driver Code
 
$A = array(3, 8, 9, 12, 18,
              4, 24, 2, 6);
$n = count($A);
$k = 3;
echo countPairs($A, $n, $k);
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// Javascript Program to find pairs count
 
// function to count the required pairs
function countPairs(A, n, k) {
  var ans = 0;
   
  // sort the given array
  A.sort((a,b)=>a-b)
 
  // for each A[i] traverse rest array
  for (var i = 0; i < n; i++) {
    for (var j = i + 1; j < n; j++) {
 
      // count Aj such that Ai*k^x = Aj
      var x = 0;
 
      // increase x till Ai * k^x <= largest element
      while ((A[i] * Math.pow(k, x)) <= A[j]) {
        if ((A[i] * Math.pow(k, x)) == A[j]) {
          ans++;
          break;
        }
        x++;
      }
    }
  }
  return ans;
}
 
// driver program
var A = [3, 8, 9, 12, 18, 4, 24, 2, 6];
var n = A.length;
var k = 3;
document.write( countPairs(A, n, k));
 
// This code is contributed by rutvik_56.
</script>
Output : 
6

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :