Pairs such that one is a power multiple of other

You are given an array A[] of n-elements and a positive integer k. Now you have find the number of pairs Ai, Aj such that Ai = Aj*(kx) where x is an integer.
Note: (Ai, Aj) and (Aj, Ai) must be count once.

Examples :

Input : A[] = {3, 6, 4, 2},  k = 2
Output : 2
Explanation : We have only two pairs 
(4, 2) and (3, 6)

Input : A[] = {2, 2, 2},   k = 2
Output : 3
Explanation : (2, 2), (2, 2), (2, 2) 
that are (A1, A2), (A2, A3) and (A1, A3) are 
total three pairs where Ai = Aj * (k^0) 

To solve this problem, we first sort the given array and then for each element Ai, we find number of elements equal to value Ai * k^x for different value of x till Ai * k^x is less than or equal to largest of Ai.
Algorithm:

    // sort the given array
    sort(A, A+n);

    // for each A[i] traverse rest array
    for (int i=0; i<n; i++)
    {
        for (int j=i+1; j<n; j++)
        {
            // count Aj such that Ai*k^x = Aj
            int x = 0;

            // increase x till Ai * k^x <= 
            // largest element
            while ((A[i]*pow(k, x)) <= A[j])
            {
                if ((A[i]*pow(k, x)) == A[j])
                {              
                     ans++;
                     break;
                }
                x++;
            }        
        }   
    }
    // return answer
    return ans;



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to find pairs count
#include <bits/stdc++.h>
using namespace std;
  
// function to count the required pairs
int countPairs(int A[], int n, int k) {
  int ans = 0;
  // sort the given array
  sort(A, A + n);
  
  // for each A[i] traverse rest array
  for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {
  
      // count Aj such that Ai*k^x = Aj
      int x = 0;
  
      // increase x till Ai * k^x <= largest element
      while ((A[i] * pow(k, x)) <= A[j]) {
        if ((A[i] * pow(k, x)) == A[j]) {
          ans++;
          break;
        }
        x++;
      }
    }
  }
  return ans;
}
  
// driver program
int main() {
  int A[] = {3, 8, 9, 12, 18, 4, 24, 2, 6};
  int n = sizeof(A) / sizeof(A[0]);
  int k = 3;
  cout << countPairs(A, n, k);
  return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find pairs count
import java.io.*;
import java .util.*;
  
class GFG {
      
    // function to count the required pairs
    static int countPairs(int A[], int n, int k) 
    {
        int ans = 0;
          
        // sort the given array
        Arrays.sort(A);
          
        // for each A[i] traverse rest array
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) 
            {
          
                // count Aj such that Ai*k^x = Aj
                int x = 0;
              
                // increase x till Ai * k^x <= largest element
                while ((A[i] * Math.pow(k, x)) <= A[j]) 
                {
                    if ((A[i] * Math.pow(k, x)) == A[j]) 
                    {
                        ans++;
                        break;
                    }
                    x++;
                }
            }
        }
        return ans;
    }
      
    // Driver program
    public static void main (String[] args) 
    {
        int A[] = {3, 8, 9, 12, 18, 4, 24, 2, 6};
        int n = A.length;
        int k = 3;
        System.out.println (countPairs(A, n, k));
          
    }
}
  
// This code is contributed by vt_m.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Program to find pairs count
import math
  
# function to count the required pairs
def countPairs(A, n, k): 
    ans = 0
  
    # sort the given array
    A.sort()
      
    # for each A[i] traverse rest array
    for i in range(0,n): 
  
        for j in range(i + 1, n):
  
            # count Aj such that Ai*k^x = Aj
            x = 0
  
            # increase x till Ai * k^x <= largest element
            while ((A[i] * math.pow(k, x)) <= A[j]) :
                if ((A[i] * math.pow(k, x)) == A[j]) :
                    ans+=1
                    break
                x+=1
    return ans
  
  
# driver program
A = [3, 8, 9, 12, 18, 4, 24, 2, 6]
n = len(A)
k = 3
  
print(countPairs(A, n, k))
  
# This code is contributed by
# Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find pairs count
using System;
  
class GFG {
      
    // function to count the required pairs
    static int countPairs(int []A, int n, int k) 
    {
        int ans = 0;
          
        // sort the given array
        Array.Sort(A);
          
        // for each A[i] traverse rest array
        for (int i = 0; i < n; i++) 
        {
            for (int j = i + 1; j < n; j++) 
            {
          
                // count Aj such that Ai*k^x = Aj
                int x = 0;
              
                // increase x till Ai * k^x <= largest element
                while ((A[i] * Math.Pow(k, x)) <= A[j]) 
                {
                    if ((A[i] * Math.Pow(k, x)) == A[j]) 
                    {
                        ans++;
                        break;
                    }
                    x++;
                }
            }
        }
        return ans;
    }
      
    // Driver program
    public static void Main () 
    {
        int []A = {3, 8, 9, 12, 18, 4, 24, 2, 6};
        int n = A.Length;
        int k = 3;
        Console.WriteLine(countPairs(A, n, k));
          
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find pairs count
  
// function to count
// the required pairs
function countPairs($A, $n, $k
{
$ans = 0;
  
// sort the given array
sort($A);
  
// for each A[i] 
// traverse rest array
for ($i = 0; $i < $n; $i++) 
{
    for ($j = $i + 1; $j < $n; $j++) 
    {
  
    // count Aj such that Ai*k^x = Aj
    $x = 0;
  
    // increase x till Ai * 
    // k^x <= largest element
    while (($A[$i] * pow($k, $x)) <= $A[$j]) 
    {
        if (($A[$i] * pow($k, $x)) == $A[$j]) 
        {
        $ans++;
        break;
        }
        $x++;
    }
    }
}
return $ans;
}
  
// Driver Code
  
$A = array(3, 8, 9, 12, 18, 
              4, 24, 2, 6);
$n = count($A);
$k = 3;
echo countPairs($A, $n, $k);
  
// This code is contributed by anuj_67.
?>

chevron_right


Output :

6


My Personal Notes arrow_drop_up

Discovering ways to develop a plane for soaring career goals

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.