Pair with min absolute difference and whose product is N+1 or N+2

Given an integer N, the task is to find a pair such that whose product is N + 1 or N + 2 and absolute difference of the pair is minimum.

Examples: 

Input: N = 8 
Output: 3, 3 
Explanation: 3 * 3 = 8 + 1
Input: N = 123 
Output: 5, 25 
Explanation: 5 * 25 = 123 + 2 
 

Approach: The idea is to Iterate a loop with a loop variable i from sqrt(N+2) to 1, and check the following conditions:

Below is the implementation of the above approach:



filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print pair (a, b)
// such that a*b=N+1 or N+2
void closestDivisors(int n)
{
    // Loop to iterate over the
    // desired possible values
    for (int i = sqrt(n + 2);
         i > 0; i--) {
 
        // Check for condition 1
        if ((n + 1) % i == 0) {
            cout << i << ", "
                 << (n + 1) / i;
            break;
        }
 
        // Check for condition 2
        if ((n + 2) % i == 0) {
            cout << i << ", "
                 << (n + 2) / i;
            break;
        }
    }
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 123;
 
    // Function Call
    closestDivisors(N);
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
class GFG{
  
// Function to print pair (a, b)
// such that a*b=N+1 or N+2
static void closestDivisors(int n)
{
    // Loop to iterate over the
    // desired possible values
    for (int i = (int)Math.sqrt(n + 2); i > 0; i--)
    {
  
        // Check for condition 1
        if ((n + 1) % i == 0)
        {
           System.out.print(i +  ", " +
                           (n + 1) / i);
            break;
        }
  
        // Check for condition 2
        if ((n + 2) % i == 0)
        {
            System.out.print(i + ", " +
                            (n + 2) / i);
            break;
        }
    }
}
  
// Driver Code
public static void main(String[] args)
{
    // Given Number
    int N = 123;
  
    // Function Call
    closestDivisors(N);
}
}
 
// This code is contributed by rock_cool
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
from math import sqrt, ceil, floor
 
# Function to prpair (a, b)
# such that a*b=N+1 or N+2
def closestDivisors(n):
 
    # Loop to iterate over the
    # desired possible values
    for i in range(ceil(sqrt(n + 2)), -1, -1):
 
        # Check for condition 1
        if ((n + 1) % i == 0):
            print(i, ",", (n + 1) // i)
            break
 
        # Check for condition 2
        if ((n + 2) % i == 0):
            print(i, ",", (n + 2) // i)
            break
  
# Driver Code
if __name__ == '__main__':
   
    # Given Number
    N = 123
 
    # Function Call
    closestDivisors(N)
 
# This code is contributed by Mohit Kumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
class GFG{
   
// Function to print pair (a, b)
// such that a*b=N+1 or N+2
static void closestDivisors(int n)
{
    // Loop to iterate over the
    // desired possible values
    for (int i = (int)Math.Sqrt(n + 2); i > 0; i--)
    {
   
        // Check for condition 1
        if ((n + 1) % i == 0)
        {
           Console.Write(i +  ", " +
                           (n + 1) / i);
            break;
        }
   
        // Check for condition 2
        if ((n + 2) % i == 0)
        {
            Console.Write(i + ", " +
                         (n + 2) / i);
            break;
        }
    }
}
   
// Driver Code
public static void Main(string[] args)
{
    // Given Number
    int N = 123;
   
    // Function Call
    closestDivisors(N);
}
}
  
// This code is contributed by Ritik Bansal
chevron_right

Output: 
5, 25






 

Time Complexity: O(sqrt(N)) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :