Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Pair of integers having difference of their fifth power as X

  • Difficulty Level : Expert
  • Last Updated : 07 Apr, 2021

Given an integer X, the task is to find a pair A and B such that their difference of fifth power is X, i.e., A5 – B5 = X. If there is no such pair print “Not Possible”.
 

Input: X = 33 
Output: 1 -2 
Explanation: 
1^{5} - (-2)^{5} = 1 - (-32) = 33 == N
Input: N = 211 
Output: -2 -3 
Explanation: 
(-2)^{5} - (-3)^{5} = -32 - (-243) = 211 == N
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Naive Approach: A simple solution is to use two for loops, one for A and one for B, ranging from -109 to 109
Efficient Approach: The idea is to narrow down the range of A and B using mathematical techniques. 
 

Since A5 – B5 = X => A5 = X + B5. For A to be as high as possible, B also has to be as high as possible, as it is evident from the inequality. 
 

Consider A = N and B = N – 1 
=> N5 – (N – 1)5 = X. 
 

 

 By binomial expansion, we know

 

(p + 1)yp <= (y + 1)p+1 – yp+1 <= (p+1)(y+1)p 
 

 



So we can say that the maximum value of LHS is 4N4.

 

Hence 4N5 <= X 
=> N <= (X/5)1/5
=> This gives us N ~ 120. 
 

 

Since A and B can also be negative, we simply extrapolate the range and the final range we get is [-120, 120].

Below is the implementation of the above approach: 
 

C++




// C++ implementation to find a pair
// of integers A & B such that
// difference of fifth power is
// equal to the given number X
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find a pair
// of integers A & B such that
// difference of fifth power is
// equal to the given number X
void findPair(int x)
{
    int lim = 120;
 
    // Loop to choose every possible
    // pair with in the range
    for (int i = -lim; i <= lim; i++) {
        for (int j = -lim; j <= lim; j++) {
 
            // Check if equation holds
            if (pow(i, 5) - pow(j, 5) == x) {
                cout << i << ' ' << j << endl;
                return;
            }
        }
    }
    cout << "-1";
}
 
// Driver Code
signed main()
{
    int X = 33;
 
    // Function Call
    findPair(X);
    return 0;
}

Java




// Java implementation to find a
// pair of integers A & B such
// that difference of fifth power
// is equal to the given number X
class GFG{
 
// Function to find a pair
// of integers A & B such that
// difference of fifth power is
// equal to the given number X
static void findPair(int x)
{
    int lim = 120;
 
    // Loop to choose every possible
    // pair with in the range
    for(int i = -lim; i <= lim; i++)
    {
       for(int j = -lim; j <= lim; j++)
       {
            
          // Check if equation holds
          if (Math.pow(i, 5) -
              Math.pow(j, 5) == x)
          {
              System.out.print(i + " " +
                               j + "\n");
              return;
          }
       }
    }
    System.out.print("-1");
}
 
// Driver Code
public static void main(String[] args)
{
    int X = 33;
 
    // Function Call
    findPair(X);
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 implementation to find 
# a pair of integers A & B such 
# that difference of fifth power
# is equal to the given number X
import math
 
# Function to find a pair
# of integers A & B such that
# difference of fifth power is
# equal to the given number X
def findPair(x):
 
    lim = 120
 
    # Loop to choose every possible
    # pair with in the range
    for i in range(-lim, lim + 1):
        for j in range(-lim, lim + 1):
             
            # Check if equation holds
            if (math.pow(i, 5) -
                math.pow(j, 5) == x):
                print (i, end = ' ')
                print (j, end = '\n')
                return
     
    print ("-1")
 
# Driver Code
X = 33
 
# Function Call
findPair(X)
 
# This code is contributed by PratikBasu

C#




// C# implementation to find a
// pair of integers A & B such
// that difference of fifth power
// is equal to the given number X
using System;
 
class GFG{
 
// Function to find a pair of
// integers A & B such that
// difference of fifth power is
// equal to the given number X
static void findPair(int x)
{
    int lim = 120;
 
    // Loop to choose every possible
    // pair with in the range
    for(int i = -lim; i <= lim; i++)
    {
       for(int j = -lim; j <= lim; j++)
       {
           
          // Check if equation holds
          if (Math.Pow(i, 5) -
              Math.Pow(j, 5) == x)
          {
              Console.Write(i + " " +
                            j + "\n");
              return;
          }
       }
    }
    Console.Write("-1");
}
 
// Driver code
public static void Main(String[] args)
{
    int X = 33;
 
    // Function call
    findPair(X);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// JavaScript implementation to find a
// pair of integers A & B such
// that difference of fifth power
// is equal to the given number X
 
 
// Function to find a pair
// of integers A & B such that
// difference of fifth power is
// equal to the given number X
function findPair(x)
{
    let lim = 120;
 
    // Loop to choose every possible
    // pair with in the range
    for(let i = -lim; i <= lim; i++)
     
    for(let j = -lim; j <= lim; j++)
     
             
        // Check if equation holds
        if (Math.pow(i, 5) -Math.pow(j, 5) == x)
        {
            document.write(i + " "+ j);
            return;
        }
     
    document.write("-1");
}
 
// Driver Code
 
    let X = 33;
 
    // Function Call
    findPair(X);
 
// This code is contributed by mohan
 
</script>
Output: 
1 -2

 

Time Complexity: O(240*240)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!