# P – smooth numbers in given ranges

Given multiple ranges **[L, R]** and a prime number p, we need to find all **P-smooth numbers** in given individual ranges.

What is P – smooth number?

An integer is P â€“ smooth number if the largest Prime factor of that number <= p. 1 is considered (by OEIS) as P – smooth number for any possible value of P because it does not have any prime factor.

Examples:

Input : p = 7 ranges[] = {[1, 17], [10, 25]} Output : For first range : 1 2 3 4 5 6 7 8 9 12 14 15 16 For second range : 15 16 18 20 21 24 25 Explanation : Largest prime factors of numbers printed above are less than or equal to 7.

Suppose, we are checking 7 – smooth numbers.

1. Consider an integer 56. Here, 56 = 2 * 2 * 2 * 7.

So, 56 has two prime factors (2 and 7) which are <=7. So, 56 is 7-smooth number.

2. Consider another integer 66. Here, 66 = 2 * 3 * 11.

66 has three prime factors (2, 3 and 11). Where 11>7. So 66 is not 7-smooth number.

**Brute – Force Approach: **Let P and range [L, R] is given. Here L <= R. Create a loop and check for all numbers in inclusive range [L : R]. If that number has largest prime factor <= p. Then print that number (i.e. P-smooth number). Calculate its Largest Prime Factor / Divisor, using **maxPrimeDivisor(n)** function.**Efficient Approach:** The idea is to pre-compute p-smooth numbers for maximum value of all ranges. Once we have pre-computed, we can quickly print for all ranges one by one.

`# Python program to display p-smooth ` `# number in given range.` `# P-smooth numbers' array` `p_smooth ` `=` `[` `1` `] ` ` ` `def` `maxPrimeDivisor(n):` ` ` ` ` `# Returns Maximum Prime ` ` ` `# Divisor of n` ` ` `MPD ` `=` `-` `1` ` ` ` ` `if` `n ` `=` `=` `1` `: ` ` ` `return` `1` ` ` ` ` `while` `n ` `%` `2` `=` `=` `0` `:` ` ` `MPD ` `=` `2` ` ` `n ` `=` `n ` `/` `/` `2` ` ` ` ` `# math.sqrt(n) + 1` ` ` `size ` `=` `int` `(n ` `*` `*` `0.5` `) ` `+` `1` ` ` `for` `odd ` `in` `range` `( ` `3` `, size, ` `2` `):` ` ` `while` `n ` `%` `odd ` `=` `=` `0` `:` ` ` ` ` `# Make sure no multiples ` ` ` `# of prime, enters here` ` ` `MPD ` `=` `odd` ` ` `n ` `=` `n ` `/` `/` `odd` ` ` ` ` `# When n is prime itself` ` ` `MPD ` `=` `max` `(n, MPD) ` ` ` ` ` `return` `MPD ` ` ` ` ` `def` `generate_p_smooth(p, MAX_LIMIT): ` ` ` ` ` `# generates p-smooth numbers.` ` ` `global` `p_smooth` ` ` ` ` `for` `i ` `in` `range` `(` `2` `, MAX_LIMIT ` `+` `1` `):` ` ` `if` `maxPrimeDivisor(i) <` `=` `p:` ` ` ` ` `# Satisfies the condition ` ` ` `# of p-smooth number` ` ` `p_smooth.append(i)` ` ` ` ` `def` `find_p_smooth(L, R):` ` ` ` ` `# finds p-smooth number in the` ` ` `# given [L:R] range.` ` ` `global` `p_smooth` ` ` `if` `L <` `=` `p_smooth[` `-` `1` `]:` ` ` ` ` `# If user input exceeds MAX_LIMIT` ` ` `# range, no checking` ` ` `for` `w ` `in` `p_smooth :` ` ` `if` `w > R : ` `break` ` ` `if` `w >` `=` `L ` `and` `w <` `=` `R :` ` ` ` ` `# Print P-smooth numbers ` ` ` `# within range : L to R.` ` ` `print` `(w, end ` `=` `" "` `)` ` ` ` ` `print` `()` ` ` `# p_smooth number : p = 7` `# L <= R` `p ` `=` `7` `L, R ` `=` `1` `, ` `100` ` ` `# Maximum possible value of R` `MAX_LIMIT ` `=` `1000` ` ` `# generate the p-smooth numbers` `generate_p_smooth(p, MAX_LIMIT) ` ` ` `# Find an print the p-smooth numbers` `find_p_smooth(L, R) ` |

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**