Skip to content
Related Articles

Related Articles

Improve Article

Orthogonal Linked List

  • Difficulty Level : Medium
  • Last Updated : 07 Sep, 2021

An Orthogonal Linked List is a data structure composed of fundamental elements called Nodes (similar to linked lists). Each node in an orthogonal Linked List points to 4 other nodes, namely up, down, left and right. In essence, just like a matrix is a 2D version of an array, an orthogonal linked list is a 2D version of a linear linked list. 

Algorithm to convert a matrix into an Orthogonal Linked List :

  1. Create a node for each cell in the matrix. In a map, and also store the value of the cell and a pointer to the created node for the cell.
  2. If the current row (i) is not the 0th row of the matrix, set the current node’s up pointer to the node of the cell just above it (use the map to get the correct pointer) and set the node above’s down pointer to the current node. 
  3. Similarly, if the current column (j) is not the 0the column of the matrix, set the current node’s left pointer to the node of the cell to the left of the current node and set the node to the left’s right pointer to the current node
  4. repeat process 1 to 3 for every cell in the matrix
  5. return map[matrix[0][0]] to return the pointer to the top-left node of the orthogonal linked list

Below is an implementation of the algorithm above.

Input:
    matrix = {
    {1, 2, 3},
    {4, 5, 6},
    {7, 8, 9}
    }

Output: 
    A Node pointing to the top-left corner of the orthogonal linked list.
    
       ^      ^      ^
       |      |      |
    <--1 <--> 2 <--> 3-->
       ^      ^      ^
       |      |      |
       v      v      v
    <--4 <--> 5 <--> 6-->
       ^      ^      ^
       |      |      |
       v      v      v
    <--7 <--> 8 <--> 9-->
       |      |      |
       v      v      v

C++




#include <bits/stdc++.h>
using namespace std;
 
struct MatrixNode
{
    int _val;
    MatrixNode* _u; // pointer to node above
    MatrixNode* _d; // pointer to node below
    MatrixNode* _l; // pointer to node towards left
    MatrixNode* _r; // pointer to node towards righ
 
    // Constructor for MatrixNode
    MatrixNode( int val = 0,
                MatrixNode* u = nullptr,
                MatrixNode* d = nullptr,
                MatrixNode* l = nullptr,
                MatrixNode* r = nullptr )
        {
            _val = val;
            _u = u;
            _d = d;
            _l = l;
            _r = r;
        }
};
 
MatrixNode* BuildOrthogonalList(int matrix[][3], int r, int c)
{
    // an unordered_map to store the {value, pointers} pair
    // for easy access while building the list
    unordered_map<int, MatrixNode*> mp;
 
    for(int i = 0; i < r; i++)
    {
        for(int j = 0; j < c; j++)
        {
            // create a newNode for each entry in the matrix
            MatrixNode* newNode = new MatrixNode(matrix[i][j]);
            // store the pointer of the new node
            mp[matrix[i][j]] = newNode;
 
            // set the up and down pointing pointers correctly
            if(i != 0)
            {
                newNode->_u = mp[matrix[i - 1][j]];
                mp[matrix[i - 1][j]]->_d = newNode;
            }
 
            // similarly set the left and right pointing pointers
            if(j != 0)
            {
                newNode->_l = mp[matrix[i][j - 1]];
                mp[matrix[i][j - 1]]->_r = newNode;
            }
        }
    }
 
    // return the start of the list
    return mp[matrix[0][0]];
}
 
void PrintOrthogonalList(MatrixNode* head)
{
    MatrixNode* curRow; // will point to the begin of each row
    MatrixNode* cur; // will traverse each row and print the element
    for(curRow = head; curRow != nullptr; curRow = curRow->_d)
    {
        for(cur = curRow; cur != nullptr; cur = cur->_r)
        {
            cout << cur->_val << " ";
        }
        cout << endl;
    }
}
 
int main()
{
    int matrix[3][3] = {
        {1, 2, 3},
        {4, 5, 6},
        {7, 8, 9}
    };
 
    MatrixNode* list = BuildOrthogonalList(matrix, 3, 3);
    PrintOrthogonalList(list);
 
    return 0;
}

Application:
The most common application of orthogonal linked list is in sparse matrix representation. In brief, a sparse matrix is a matrix in which most of its elements are zeroes (or any known constant). They appear often in scientific applications. Representing sparse matrices as a 2D array is a huge wastage of memory. Instead, sparse matrices are represented as an orthogonal linked list. We create a node only for non-zero elements in the matrix and in each node, we store the value, the row index and the column index along with the necessary pointers to other nodes. This saves a lot of performance overhead and is the most memory-efficient way to implement a sparse matrix.

Attention reader! Don’t stop learning now.  Practice GATE exam well before the actual exam with the subject-wise and overall quizzes available in GATE Test Series Course.

Learn all GATE CS concepts with Free Live Classes on our youtube channel.




My Personal Notes arrow_drop_up
Recommended Articles
Page :