Skip to content
Related Articles

Related Articles

Improve Article

Organizing Tournament Problem

  • Difficulty Level : Medium
  • Last Updated : 12 Aug, 2021
Geek Week

Given a positive integer N representing the count of players playing the game. The game is played between two teams such that each team consists of at least one player but the total count of players in the game must be N. The game lasts in exactly 30 minutes, the task is to check if all players will play the game against each other or not If the game can be played up to T hours and it is allowed to play the game more than 1 times. If found to be true then print “Possible”. Otherwise, print “Not Possible”.

Examples:

Input: N = 3, T = 1 
Output: Possible 
Explanation: 
In 1st half hours Players { p1, p2 } played the game against { p3 }. 
In 2d half hours Players { p2, P3 } played the game against { p1
Since all players played the game against each other within T(=1) hours. Therefore, the required output is “Possible”.

Input: N = 4, T = 0.5 
Output: Not Possible 
Explanation: 
In 1st half hours Players { p1, p2 } played the game against { p3, p4 }. 
Since player p1 did not play the game against p2 within T(=0.5) hours. Therefore, the required output is “Not Possible”.

Approach: The problem can be solved using Greedy technique. Following are the observations:



  • In each game, if one of the two teams has only one player then the game must be played N – 1 times.
  • In each game, If one of the team have N / 2 players and other team have (N + 1) / 2 then the game must be played (N + 1) / 2 times.

Follow the steps below to solve the problem:

  • If total time to play the game N-1 times is less than or equal to T, then print “Possible”.
  • If total time to play the game (N + 1) / 2 times is less than or equal to T, then print “Possible”.
  • Otherwise, print “Not Possible”.

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
#include <iostream>
using namespace std;
 
// Function to find the N players
// the game against each other or not
string calculate(int N, int T)
{
   
   // Base Case
    if (N <= 1 || T <= 0) {
       
      // Return -1 if not valid
        return "-1";
    }
   
  // Converting hours into minutes
    int minutes = T * 60;
   
   // Calculating maximum games that
    // can be played.
    int max_match = N - 1;
   
  // Time required for conducting
    // maximum games
    int max_time = max_match * 30;
 
  // Checking if it is possible
    // to conduct maximum games
    if (max_time <= minutes) {
       
      // Return possible
        return "Possible";
    }
 
  // Calculating minimum games
    int min_match = N / 2;
    min_match = N - min_match;
   
  // Time required for conducting
    // minimum games
    int min_time = min_match * 30;
 
  // Checking if it is possible
   // to conduct minimum games
    if (min_time <= minutes) {
       
      // Return possible
        return "Possible";
    }
 
  // Return not possible if time
   // is less than required time
    return "Not Possible";
}
 
 // Driver Code
 // Total count of players
int main()
{
    int N = 6, T = 2;
   
  // function call
    cout << calculate(N, T);
    return 0;
}
 
// This code is contributed by Parth Manchanda

Java




// Java program for the above approach
import java.io.*;
 
class GFG {
 
// Function to find the N players
// the game against each other or not
static String calculate(int N, int T)
{
   
   // Base Case
    if (N <= 1 || T <= 0) {
       
      // Return -1 if not valid
        return "-1";
    }
   
  // Converting hours into minutes
    int minutes = T * 60;
   
   // Calculating maximum games that
    // can be played.
    int max_match = N - 1;
   
  // Time required for conducting
    // maximum games
    int max_time = max_match * 30;
 
  // Checking if it is possible
    // to conduct maximum games
    if (max_time <= minutes) {
       
      // Return possible
        return "Possible";
    }
 
  // Calculating minimum games
    int min_match = N / 2;
    min_match = N - min_match;
   
  // Time required for conducting
    // minimum games
    int min_time = min_match * 30;
 
  // Checking if it is possible
   // to conduct minimum games
    if (min_time <= minutes) {
       
      // Return possible
        return "Possible";
    }
 
  // Return not possible if time
   // is less than required time
    return "Not Possible";
}
 
// Driver code
public static void main(String[] args)
{
    int N = 6, T = 2;
   
    // function call
    System.out.println(calculate(N, T));
}
}
 
// This code is contributed by sanjoy_62.

Python3




# Python program for the above problem
 
 
 
# Function to find the N players
# the game against each other or not
def calculate(N, T):
 
 
    # Base Case
    if N <= 1 or T <= 0:
 
        # Return -1 if not valid
        return -1
 
 
    # Converting hours into minutes
    minutes = T * 60
 
 
    # Calculating maximum games that
    # can be played.
    max_match = N - 1
 
 
    # Time required for conducting
    # maximum games
    max_time = max_match * 30
 
 
    # Checking if it is possible
    # to conduct maximum games
    if max_time <= minutes:
 
 
        # Return possible
        return "Possible"
 
 
    # Calculating minimum games
    min_match = N//2
    min_match = N - min_match
 
 
    # Time required for conducting
    # minimum games
    min_time = min_match * 30
 
 
    # Checking if it is possible
    # to conduct minimum games
    if min_time <= minutes:
 
 
        # Return possible
        return "Possible"
 
 
    # Return not possible if time
    # is less than required time
    return "Not Possible"
 
 
 
# Driver Code
if __name__ == "__main__":
 
 
    # Total count of players
    N = 6
 
 
    # Given hours
    T = 2
 
 
    # Function call
    ans = calculate(N, T)
 
 
    # Print ans
    print(ans)

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the N players
// the game against each other or not
static string calculate(int N, int T)
{
   
   // Base Case
    if (N <= 1 || T <= 0) {
       
      // Return -1 if not valid
        return "-1";
    }
   
  // Converting hours into minutes
    int minutes = T * 60;
   
   // Calculating maximum games that
    // can be played.
    int max_match = N - 1;
   
  // Time required for conducting
    // maximum games
    int max_time = max_match * 30;
 
  // Checking if it is possible
    // to conduct maximum games
    if (max_time <= minutes) {
       
      // Return possible
        return "Possible";
    }
 
  // Calculating minimum games
    int min_match = N / 2;
    min_match = N - min_match;
   
  // Time required for conducting
    // minimum games
    int min_time = min_match * 30;
 
  // Checking if it is possible
   // to conduct minimum games
    if (min_time <= minutes) {
       
      // Return possible
        return "Possible";
    }
 
  // Return not possible if time
   // is less than required time
    return "Not Possible";
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 6, T = 2;
   
  // function call
    Console.WriteLine(calculate(N, T));
}
}
 
// This code is contributed by splevel62.

Javascript




<script>
       // JavaScript Program for the above approach
 
       // Function to find the N players
       // the game against each other or not
       function calculate(N, T)
       {
 
           // Base Case
           if (N <= 1 || T <= 0)
           {
 
               // Return -1 if not valid
               return -1;
           }
 
           // Converting hours into minutes
           let minutes = T * 60;
 
           // Calculating maximum games that
           // can be played.
           let max_match = N - 1
 
           // Time required for conducting
           // maximum games
           max_time = max_match * 30
 
           // Checking if it is possible
           // to conduct maximum games
           if (max_time <= minutes)
           {
            
               // Return possible
               return "Possible";
           }
 
           // Calculating minimum games
           min_match = Math.floor(N / 2);
           min_match = N - min_match
 
           // Time required for conducting
           // minimum games
           min_time = min_match * 30;
 
           // Checking if it is possible
           // to conduct minimum games
           if (min_time <= minutes)
           {
            
               // Return possible
               return "Possible";
 
               // Return not possible if time
               // is less than required time
               return "Not Possible";
           }
 
       }
 
       // Driver Code
       // Total count of players
       let N = 6
 
       // Given hours
       let T = 2
 
       // Function call
       let ans = calculate(N, T)
 
       // Print ans
       document.write(ans);
 
   // This code is contributed by Potta Lokesh
   </script>
Output: 
Possible

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :