Skip to content
Related Articles

Related Articles

Improve Article
Occurrences of a pattern in binary representation of a number
  • Difficulty Level : Basic
  • Last Updated : 18 May, 2021

Given a string pat and an integer N, the task is to find the number of occurrences of the pattern pat in binary representation of N.
Examples: 
 

Input: N = 2, pat = “101” 
Output:
Pattern “101” doesn’t occur in the binary representation of 2 (10).
Input: N = 10, pat = “101” 
Output:
Binary representation of 10 is 1010 and the given pattern occurs only once. 
 

 

Naive Approach: Convert the number into its binary string representation and then use a pattern matching algorithm to check the number of times the pattern has occurred in the binary representation.
Efficient Approach: 
 

  1. Convert the binary pattern into it’s decimal representation.
  2. Take an integer all_ones, whose binary representation consists of all set bits (equal to the number of bits in the pattern).
  3. Performing N & all_ones now will leave only the last k bits unchanged (others will be 0) where k is the number of bits in the pattern.
  4. Now if N = pattern, it means that N contained the pattern in the end in its binary representation. So update count = count + 1.
  5. Right shift N by 1 and repeat the previous two steps until N ≥ pattern & N > 0.
  6. Print the count in the end.

Below is the implementation of the above approach: 
 



C++




// C++ program to find the number of times
// pattern p occurred in binary representation
// on n.
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of occurrence
// of pat in binary representation of n
int countPattern(int n, string pat)
{
    // To store decimal value of the pattern
    int pattern_int = 0;
 
    int power_two = 1;
 
    // To store a number that has all ones in
    // its binary representation and length
    // of ones equal to length of the pattern
    int all_ones = 0;
 
    // Find values of pattern_int and all_ones
    for (int i = pat.length() - 1; i >= 0; i--) {
        int current_bit = pat[i] - '0';
        pattern_int += (power_two * current_bit);
        all_ones = all_ones + power_two;
        power_two = power_two * 2;
    }
 
    int count = 0;
    while (n && n >= pattern_int) {
 
        // If the pattern occurs in the last
        // digits of n
        if ((n & all_ones) == pattern_int) {
            count++;
        }
 
        // Right shift n by 1 bit
        n = n >> 1;
    }
    return count;
}
 
// Driver code
int main()
{
    int n = 500;
    string pat = "10";
    cout << countPattern(n, pat);
}

Java




// Java program to find the number of times
// pattern p occurred in binary representation
// on n.
import java.util.*;
 
class solution
{
 
// Function to return the count of occurrence
// of pat in binary representation of n
static int countPattern(int n, String pat)
{
    // To store decimal value of the pattern
    int pattern_int = 0;
 
    int power_two = 1;
 
    // To store a number that has all ones in
    // its binary representation and length
    // of ones equal to length of the pattern
    int all_ones = 0;
 
    // Find values of pattern_int and all_ones
    for (int i = pat.length() - 1; i >= 0; i--) {
        int current_bit = pat.charAt(i) - '0';
        pattern_int += (power_two * current_bit);
        all_ones = all_ones + power_two;
        power_two = power_two * 2;
    }
 
    int count = 0;
    while (n!=0 && n >= pattern_int) {
 
        // If the pattern occurs in the last
        // digits of n
        if ((n & all_ones) == pattern_int) {
            count++;
        }
 
        // Right shift n by 1 bit
        n = n >> 1;
    }
    return count;
}
 
// Driver code
public static void main(String args[])
{
    int n = 500;
    String pat = "10";
    System.out.println(countPattern(n, pat));
}
}

Python3




# Python 3 program to find the number of times
# pattern p occurred in binary representation
# on n.
 
# Function to return the count of occurrence
# of pat in binary representation of n
def countPattern(n, pat):
     
    # To store decimal value of the pattern
    pattern_int = 0
 
    power_two = 1
 
    # To store a number that has all ones in
    # its binary representation and length
    # of ones equal to length of the pattern
    all_ones = 0
 
    # Find values of pattern_int and all_ones
    i = len(pat) - 1
    while(i >= 0):
        current_bit = ord(pat[i]) - ord('0')
        pattern_int += (power_two * current_bit)
        all_ones = all_ones + power_two
        power_two = power_two * 2
        i -= 1
     
    count = 0
    while (n != 0 and n >= pattern_int):
         
        # If the pattern occurs in the last
        # digits of n
        if ((n & all_ones) == pattern_int):
            count += 1
         
        # Right shift n by 1 bit
        n = n >> 1
     
    return count
 
# Driver code
if __name__ == '__main__':
    n = 500
    pat = "10"
    print(countPattern(n, pat))
 
# This code is contributed by
# Surendra_Gangwar

C#




// C# program to find the number of times
// pattern p occurred in binary representation
// on n.
using System ;
 
class GFG
{
 
// Function to return the count of occurrence
// of pat in binary representation of n
static int countPattern(int n, string pat)
{
    // To store decimal value of the pattern
    int pattern_int = 0;
 
    int power_two = 1;
 
    // To store a number that has all ones in
    // its binary representation and length
    // of ones equal to length of the pattern
    int all_ones = 0;
 
    // Find values of pattern_int and all_ones
    for (int i = pat.Length - 1; i >= 0; i--)
    {
        int current_bit = pat[i] - '0';
        pattern_int += (power_two * current_bit);
        all_ones = all_ones + power_two;
        power_two = power_two * 2;
    }
 
    int count = 0;
    while (n != 0 && n >= pattern_int)
    {
 
        // If the pattern occurs in the last
        // digits of n
        if ((n & all_ones) == pattern_int)
        {
            count++;
        }
 
        // Right shift n by 1 bit
        n = n >> 1;
    }
    return count;
}
 
// Driver code
public static void Main()
{
    int n = 500;
    string pat = "10";
    Console.WriteLine(countPattern(n, pat));
}
}
 
// This code is contributed by Ryuga

PHP




<?php
// PHP program to find the number of times
// pattern pat occurred in binary representation
// of n.
 
// Function to return the count of occurrence
// of pat in binary representation of n
function countPattern($n, $pat)
{
    // To store decimal value of the pattern
    $pattern_int = 0;
 
    $power_two = 1;
 
    // To store a number that has all ones in
    // its binary representation and length
    // of ones equal to length of the pattern
    $all_ones = 0;
 
    // Find values of $pattern_int and $all_ones
    for ($i = strlen($pat) - 1; $i >= 0; $i--)
    {
        $current_bit = $pat[$i] - '0';
        $pattern_int += ($power_two * $current_bit);
        $all_ones = $all_ones + $power_two;
        $power_two = $power_two * 2;
    }
 
    $count = 0;
    while ($n && $n >= $pattern_int)
    {
 
        // If the pattern occurs in the last
        // digits of $n
        if (($n & $all_ones) == $pattern_int)
        {
            $count++;
        }
 
        // Right shift $n by 1 bit
        $n = $n >> 1;
    }
    return $count;
}
 
// Driver code
$n = 500;
$pat = "10";
echo countPattern($n, $pat);
 
// This code is contributed by ihritik
?>

Javascript




<script>
 
// Javascript program to find the number of times
// pattern p occurred in binary representation
// on n.
 
 
// Function to return the count of occurrence
// of pat in binary representation of n
function countPattern( n, pat)
{
    // To store decimal value of the pattern
    let pattern_int = 0;
 
    let power_two = 1;
 
    // To store a number that has all ones in
    // its binary representation and length
    // of ones equal to length of the pattern
    let all_ones = 0;
 
    // Find values of pattern_int and all_ones
    for (let i = pat.length - 1; i >= 0; i--) {
        let current_bit = pat.charAt(i) - '0';
        pattern_int += (power_two * current_bit);
        all_ones = all_ones + power_two;
        power_two = power_two * 2;
    }
 
    let count = 0;
    while (n!=0 && n >= pattern_int) {
 
        // If the pattern occurs in the last
        // digits of n
        if ((n & all_ones) == pattern_int) {
            count++;
        }
 
        // Right shift n by 1 bit
        n = n >> 1;
    }
    return count;
}
 
// Driver Code
 
let n = 500;
let pat = "10";
document.write(countPattern(n, pat));
 
</script>
Output: 
2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :