numpy.zeros_like() in Python

numpy.zeros_like(array, dtype = None, order = ‘K’, subok = True) : Return array of given shape and type as given array, with zeros,
Parameters :

arrray : array_like input
subok  : [optional, boolean]If true, then newly created array will be sub-class of array; 
                 otherwise, a base-class array
order  : C_contiguous or F_contiguous
         C-contiguous order in memory(last index varies the fastest)
         C order means that operating row-rise on the array will be slightly quicker
         FORTRAN-contiguous order in memory (first index varies the fastest).
         F order means that column-wise operations will be faster. 
dtype  : [optional, float(byDeafult)] Data type of returned array.  

Returns :

ndarray of zeros having given shape, order and datatype.


Code 1 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Programming illustrating
# numpy.zeros_like method
  
import numpy as geek
  
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
  
  
b = geek.zeros_like(array, float)
print("\nMatrix b : \n", b)
  
array = geek.arange(8)
c = geek.zeros_like(array)
print("\nMatrix c : \n", c)

chevron_right


Output:

Original array : 
 [[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]]

Matrix b : 
 [[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]

Matrix c : 
 [0 0 0 0 0 0 0 0]


Code 2 :

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python Programming illustrating
# numpy.zeros_like method
  
import numpy as geek
  
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
  
array = geek.arange(4).reshape(2, 2)
c = geek.zeros_like(array, dtype = 'float')
print("\nMatrix  : \n", c)
  
array = geek.arange(8)
c = geek.zeros_like(array, dtype = 'float', order ='C')
print("\nMatrix  : \n", c)

chevron_right


Output :

Original array : 
 [[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]]

Matrix  : 
 [[ 0.  0.]
 [ 0.  0.]]

Matrix  : 
 [ 0.  0.  0.  0.  0.  0.  0.  0.]

References :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.zeros_like.html#numpy.zeros_like
Note :
Also, these codes won’t run on online-ID. Please run them on your systems to explore the working

This article is contributed by Mohit Gupta_OMG 😀. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up