# numpy.var() in Python

• Last Updated : 03 Dec, 2018

`numpy.var(arr, axis = None)` : Compute the variance of the given data (array elements) along the specified axis(if any).

Example :

x = 1 1 1 1 1
Standard Deviation = 0 . Variance = 0

y = 9, 2, 5, 4, 12, 7, 8, 11, 9, 3, 7, 4, 12, 5, 4, 10, 9, 6, 9, 4

Step 1 : Mean of distribution 4 = 7
Step 2 : Summation of (x – x.mean())**2 = 178
Step 3 : Finding Mean = 178 /20 = 8.9
This Result is Variance.

Parameters :

arr : [array_like] input array.
axis : [int or tuples of int] axis along which we want to calculate the variance. Otherwise, it will consider `arr `to be flattened (works on all the axis). axis = 0 means variance along the column and axis = 1 means variance along the row.
out : [ndarray, optional] Different array in which we want to place the result. The array must have the same dimensions as expected output.
dtype : [data-type, optional] Type we desire while computing variance.

Results : Variance of the array (a scalar value if axis is none) or array with variance values along specified axis.

Code #1:

 `# Python Program illustrating ``# numpy.var() method ``import` `numpy as np ``     ` `# 1D array ``arr ``=` `[``20``, ``2``, ``7``, ``1``, ``34``] `` ` `print``(``"arr : "``, arr) ``print``(``"var of arr : "``, np.var(arr)) `` ` `print``(``"\nvar of arr : "``, np.var(arr, dtype ``=` `np.float32)) ``print``(``"\nvar of arr : "``, np.var(arr, dtype ``=` `np.float64)) `

Output :

```arr :  [20, 2, 7, 1, 34]
var of arr :  158.16

var of arr :  158.16

var of arr :  158.16```

Code #2:

 `# Python Program illustrating ``# numpy.var() method ``import` `numpy as np ``     ` `# 2D array ``arr ``=` `[[``2``, ``2``, ``2``, ``2``, ``2``], ``    ``[``15``, ``6``, ``27``, ``8``, ``2``], ``    ``[``23``, ``2``, ``54``, ``1``, ``2``, ], ``    ``[``11``, ``44``, ``34``, ``7``, ``2``]] `` ` `     ` `# var of the flattened array ``print``(``"\nvar of arr, axis = None : "``, np.var(arr)) ``     ` `# var along the axis = 0 ``print``(``"\nvar of arr, axis = 0 : "``, np.var(arr, axis ``=` `0``)) `` ` `# var along the axis = 1 ``print``(``"\nvar of arr, axis = 1 : "``, np.var(arr, axis ``=` `1``)) `

Output :

```var of arr, axis = None :  236.14000000000004

var of arr, axis = 0 :  [ 57.1875 312.75   345.6875   9.25     0.    ]

var of arr, axis = 1 :  [  0.    77.04 421.84 269.04]```

My Personal Notes arrow_drop_up