(arr1, arr22, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None, ufunc ‘true_divide’) :
Array element from first array is divided by the elements from second array(all happens element-wise). Both arr1 and arr2 must have same shape. Returns true division element-wise.
Python traditionally follow ‘floor division’. Regardless of input type, true division adjusts answer to its best.
“//” is floor division operator.
“/” is true division operator.
Parameters :
arr1 : [array_like]Input array or object which works as numerator. arr2 : [array_like]Input array or object which works as denominator. out : [ndarray, None, optional]Output array with same dimensions as Input array, placed with result. **kwargs : allows you to pass keyword variable length of argument to a function. It is used when we want to handle named argument in a function. where : [array_like, optional]True value means to calculate the universal functions(ufunc) at that position, False value means to leave the value in the output alone.
Return :
If inputs are scalar then scalar; otherwise array with arr1 / arr2(element- wise) i.e. true division
Code 1 : arr1 divided by arr2
# Python program explaining # true_divide() function import numpy as np # input_array arr1 = [ 6 , 7 , 2 , 9 , 1 ] arr2 = [ 2 , 3 , 4 , 5 , 6 ] print ( "arr1 : " , arr1) print ( "arr1 : " , arr2) # output_array out = np.true_divide(arr1, arr2) print ( "\nOutput array : \n" , out) |
Output :
arr1 : [6, 7, 2, 9, 1] arr1 : [2, 3, 4, 5, 6] Output array : [ 3. 2.33333333 0.5 1.8 0.16666667]
Code 2 : elements of arr1 divided by divisor
# Python program explaining # true_divide() function import numpy as np # input_array arr1 = [ 2 , 7 , 3 , 11 , 4 ] divisor = 3 print ( "arr1 : " , arr1) # output_array out = np.true_divide(arr1, divisor) print ( "\nOutput array : " , out) |
Output :
arr1 : [2, 7, 3, 11, 4] Output array : [ 0.66666667 2.33333333 1. 3.66666667 1.33333333]
Code 3 : Comparison between floor_division(//) and true-division(/)
# Python program explaining # true_divide() function import numpy as np # input_array arr1 = np.arange( 5 ) arr2 = [ 2 , 3 , 4 , 5 , 6 ] print ( "arr1 : " , arr1) print ( "arr1 : " , arr2) # output_array out = np.floor_divide(arr1, arr2) out_arr = np.true_divide(arr1, arr2) print ( "\nOutput array with floor divide : \n" , out) print ( "\nOutput array with true divide : \n" , out_arr) print ( "\nOutput array with floor divide(//) : \n" , arr1 / / arr2) print ( "\nOutput array with true divide(/) : \n" , arr1 / arr2) |
Output :
arr1 : [0 1 2 3 4] arr1 : [2, 3, 4, 5, 6] Output array with floor divide : [0 0 0 0 0] Output array with true divide : [ 0. 0.33333333 0.5 0.6 0.66666667] Output array with floor divide(//) : [0 0 0 0 0] Output array with true divide(/) : [ 0. 0.33333333 0.5 0.6 0.66666667]
References :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.floor_divide.html
.
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.